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abstract

Stability of Planar Detonations in the Reactive Navier-Stokes Equations

Joshua W. Lytle
Department of Mathematics, BYU 

Doctor of Philosophy

This dissertation focuses on the study of spectral stability in traveling waves, with a spe-
cial interest in planar detonations in the multidimensional reactive Navier-Stokes equations.
The chief tool is the Evans function, combined with STABLAB, a numerical library devoted
to calculating the Evans function. Properly constructed, the Evans function is an analytic
function in the right half-plane whose zeros correspond in multiplicity and location to the
spectrum of the traveling wave. Thus the Evans function can be used to verify stability,
or to locate precisely any unstable eigenvalues. We introduce a new method that uses nu-
merical continuation to follow unstable eigenvalues as system parameters vary. We also use
the Evans function to track instabilities of viscous detonations in the multidimensional re-
active Navier-Stokes equations, building on recent results for detonations in one dimension.
Finally, we introduce a Python implementation of STABLAB, which we hope will improve
the accessibility of STABLAB and aid the future study of large, multidimensional systems
by providing easy-to-use parallel processing tools.

Keywords: detonations, Evans function, traveling waves, Navier-Stokes, planar waves, root
following
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Chapter 1. Introduction to stability for

traveling waves

A traveling wave arises as a solution of an evolution equation

ut = F(u, ux, uxx, . . .) (1.1)

which has the form u(x, t) = û(x− st), where s is the speed of the traveling wave. Traveling

waves are an important subject in applied mathematics. They occur as solutions of physical

systems studied in many scientific disciplines, for example in nonlinear optics, materials

science, population dynamics, gas dynamics, and combustion processes.

Classical examples of traveling waves include detonations in combustion and solitons

in fluid dynamics. Solitons were first discovered in 1834 by John Scott Russel, a naval

architect. Russel was looking for the most efficient design for canal boats when he observed

the soliton—a peak of water massed at the bow of the boat, which continued down the canal

at a constant speed after the boat had stopped moving.

Figure 1.1: Re-creation in 1995 of John Russel’s initial sighting of a soliton on the Union
Canal, Edinburgh. Thanks to Heriot-Watt University, Scotland.

1
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An important question to resolve in the study of traveling waves is whether a traveling

wave is stable. The stability of a traveling wave can determine whether the wave is likely to

be observed experimentally, or if the wave is an artifact of a mathematical framework with

no real world connection. Verifying the mathematical stability of an unobserved traveling

wave suggests possible experiments for scientists.

The spectrum of the operator linearized about the traveling wave has implications for

the nonlinear stability of a traveling wave. Zumbrun and collaborators [30, 14, 25, 24] have

shown that spectral stability of the linearized operator implies nonlinear stability for certain

important classes of (1.1).

To study spectral stability we compute the Evans function, whose zeros correspond to

eigenvalues of the linearized operator. The Evans function is analytic in the right half-plane,

allowing us to use rootfinding techniques to locate eigenvalues. Energy estimates are often

used to find a bounded subset of the right half-plane containing the relevant eigenvalues. A

winding number of zero for a contour about the bounded region indicates spectral stability.

For those systems that do become spectrally unstable in some parameter regime, we would

like to know exactly when and how the instability occurs. We can do this by creating

bifurcation diagrams of eigenvalues as they cross into the right half-plane.

1.1 Nonlinear stability

A traveling wave solution û of (1.1) solves the profile ODE

−su′ = F(u, u′, u′′, . . .).

This is found by plugging the ansatz u(x, t) = û(x − st) into the evolution equation (1.1).

The profile ODE can also be found by translating the system into the moving frame: (x, t)→

2
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(x− st, t). In the moving frame the PDE is written

ut = sux + F(u, ux, uxx, . . .). (1.2)

The traveling wave is then a stationary solution of the PDE (1.2) in the moving frame, that

is, a solution of the system sû′ + F(û) = 0.

Let X be an appropriate Banach space, and A ⊂ X an admissible set of perturbations.

The stability problem involves understanding the solutions u(x, t) of the Cauchy problem

ut = sux + F(u),

u(x, 0) = û(x) + v(x, 0), v(x, 0) ∈ A,
(1.3)

for admissible perturbations v ∈ A. We then ask several questions about the solution u: Will

the perturbed wave converge to (some translate) û(x+ δ) as t→∞? Or will it lose energy

and cohesion, oscillate, or evolve into something else entirely? These questions motivate the

definition of nonlinear stability.

Definition 1.1 (Asymptotic orbital stability or nonlinear stability). A stationary solution û

of (1.2) is asymptotically orbitally stable with regard to the class of perturbations A if

u(·, t)→ û(x+ δ) as t→∞

for some translation δ whenever v(x, 0) = u(x, 0)− û(x) ∈ A.

1.2 Spectral stability

The eigenvalue problem comes from linearizing the PDE

ut = sux + F(u, ux, uxx, . . .) (1.4)

3
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about the wave front û to get

λv = Lv = (s∂x + dF(û))v. (1.5)

Definition 1.2. Consider the linear operator L defined by (1.5). The spectrum σ(L) of L

consists of all values λ ∈ C such that L − λI is not invertible. The spectrum of L can be

further decomposed into two sets: the point spectrum σp(L) of L and the essential spectrum

σe(L) of L. The point spectrum of L are those values λ ∈ σ(L) that are isolated eigenvalues of

L having finite multiplicity. The remaining points in σ(L) are called the essential spectrum.

Definition 1.3. The operator L in (1.5) is spectrally stable if its spectrum does not extend

into the closed deleted right half-plane
∑

+ = {λ ∈ C\{0} : Re(λ) ≥ 0}.

The essential spectrum can often be bounded in the left half of the complex plane. The

point spectrum can then be considered separately. The Evans function will be our tool of

choice as we study the point spectrum. This function, defined in the right half-plane, plays

a role similar to the characteristic polynomial. The zeros of the Evans function correspond

in both location and multiplicity to the point spectrum of the traveling wave.

A conceptual argument that spectral stability may be used to determine nonlinear stabil-

ity goes as follows: Any initial state u can be written as u = û+v, where v is a perturbation

of û. We linearize (1.2) about û, obtaining

ût + vt = s(û+ v)x + F(û) + dF(û)v +N(v), N(v) = O(|v|2). (1.6)

Since ût = 0 and sûx + F(û) = 0 we obtain

vt = (s∂x + dF(û))v +N(v),

= Lv +Nv.

4
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Then using Duhamel’s method the solution v(x, t) can be written

v = eLtv0 +

∫ t

0

eL(t−s)N(s)ds.

Since v is small and N ∼ O(v2),
∫ t

0
eL(t−s)N(s)ds is negligible and v ≈ eLtv0.

We note that λ = 0 is always an eigenvalue of L, and is associated with the translational

invariance of the traveling wave.

Lemma 1.4 (Sattinger [28]). The derivative of û is an eigenfunction of L with eigenvalue

λ = 0.

Proof. Due to the translational invariance of the traveling wave, F(û(x + δ)) = 0 for each

δ ∈ R. Then d
dδ

(F(û(x+ δ)) |δ=0 = dF(û)û′ = 0, so û′ is an eigenvector of L = dF(û) with

eigenvalue 0.

Consider the class of evolution equations

ut + f(u)x − (B(u)ux)x + (C(u)uxx)x +Q(u) = 0 (1.7)

where x ∈ R, u, f ∈ Rn, and B,C,Q ∈ Rn×n are sufficiently smooth. The function f(u)x is

the flux or convection/advection of u, (B(u)ux)x the diffusion of u, (C(u)uxx)x the dispersion

term, and Q(u) the reaction term.

Suppose û is a traveling wave solution of (1.7). Translating (1.7) with (x, t)→ (x−st, t),

we obtain the equation

ut + (f(u)− su)x − (B(u)ux)x + (C(u)uxx)x +Q(u) = 0, (1.8)

of which the wave û is a stationary solution. Linearizing (1.8) about û we obtain

vt = −(Av)x + (Bvx)x − (Cvxx)x −Dv +N(v),

5
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where

Av := (df(û)− s)v − dB(û)vûx + dC(û)vûxx,

B := B(û), C := C(û), D := dQ(v),

and where the nonlinear portion N(v) consists of higher order terms in v and its derivatives.

This yields the linear eigenvalue problem

λv = Lv := −(Av)x + (Bvx)x − (Cvxx)x −Dv. (1.9)

Following the exposition in [21] and its references, in the next two sections we will describe

how to deal with the essential and point spectrums of L.

1.2.1 Essential spectrum. The following result is useful in dealing with the essential

spectrum of L.

Theorem 1.5 (Henry [13]). Let L± be the operators defined by linearizing (1.9) about û =

u±. Then the essential spectrum of L is bounded to the left of

σe(L+) ∪ σe(L−).

Proof. We note that linearization about u± yields

vt = L±v = −A±vx +B±vxx − C±vxxx −D±v,

where A± = A(u±), . . . , D± = D(u±) are constant matrices. Recalling that the constant

coefficient linear operators L± do not have a point spectrum, we have σ(L±) = σe(L±).

We use the Fourier transform to make a formal argument concerning σe(L±). Now

(L̂− λI)−1v = (−iξA± − ξ2B± + iξ3C± −D± − λI)−1v

6
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where ξ ∈ R. Note that invertibility of L−λI is lost whenever−iξA±−ξ2B±+iξ3C±−D±−λI

is singular, so that λ ∈ σ(L±) exactly when λ ∈ σ(−iξA± − ξ2B± + iξ3C± −D±) for some

ξ ∈ R. Thus we have 2n curves λ±j defined by the eigenvalues of −iξA±−ξ2B±+iξ3C±−D±,

with

σe(L+) ∪ σe(L−) =
⋃
j

λ+
j (ξ) ∪

⋃
j

λ−j (ξ).

Thus the eigenvalues of A±, B±, C±, and D± describe bounds on the essential spectrum of

L.

1.2.2 Point spectrum. The problem of obtaining bounds on the point spectrum of L

is generally much harder than dealing with the essential spectrum. Energy estimates have

proven to be a useful tool in many instances, although their application is often not obvious

or intuitive.

One of the difficulties associated with obtaining uniform bounds stems from the presence

of λ = 0 in the point spectrum of L. For the reactionless equation (1.9), Q(u) = 0, the eigen-

value problem may instead be viewed in integrated coordinates. Specifically, by integrating

both sides of

λv = Lv = −(A(û)v)x + (B(û)vx)x − (C(û)vxx)x

from −∞ to x, and substituting w(x) =
∫ x
−∞ v(y) dy, we obtain the integrated operator

λw = Lw := −A(û)w′ +B(û)w′′ − C(û)w′′′.

Lemma 1.6. The point spectrum of L is the same as L, excluding λ = 0.

Proof. Suppose λv = Lv with λ 6= 0. Integrating both sides from −∞ to x and substituting

7



www.manaraa.com

w(x) =
∫ x
−∞ v(y) dy yields λw = Lw. Since

λw(+∞) = −
∫ ∞
−∞

(Av)′ +

∫ ∞
−∞

(Bv′)′ −
∫ ∞
−∞

(Cv′′)′ = 0,

we note that w decays to 0. Similarly w(n) decays to 0 for n = 1, . . . , so w is an admissible

eigenvector and σ(L)\{0} ⊂ σ(L).

Now suppose λw = Lw, λ 6= 0. Differentiating yields

λw′ = −(Aw′)′ + (Bw′′)′ − (Cw′′′)′,

making w′ an eigenvalue of L. Thus σp(L)\{0} = σp(L)\{0}.

Example 1.7. Consider Burgers equation

ut + uux = uxx,

together with its traveling wave solution û. Burgers equation in its moving frame (x, t) →

(x− st, t) is

ut − sux + uux = uxx, x ∈ R. (1.10)

The wave profile û is a stationary solution of (1.10), with ût = 0. Thus û can be found by

solving

−su′ +
(
u2

2

)′
= u′′. (1.11)

Integrating (1.11) from −∞ to x yields

−s(u− u−) +
u2 − u2

−

2
= u′. (1.12)

8
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As x→∞ we obtain the Rankine-Hugoniot condition

−s(u+ − u−) +
u2

+ − u2
−

2
= 0.

This uniquely specifies the wave speed s = (u+ + u−)/2. Equation (1.12) has the general

solution

{û(x− st+ δ)}δ∈R =

{
s− a tanh

(
a(x− st+ δ)

2

)}
δ∈R

, a =
u− − u+

2
. (1.13)

Let u be the solution of (1.10) corresponding to the perturbed initial data

u(x, t)t=0 = û(x) + v(x), v ∈ A.

Substituting u into (1.10), we use vvx = o(|v|2) and −sûx+ûûx = ûxx to obtain the linearized

evolution equation

vt − svx + ûxv + ûvx = vxx.

This can be written as vt = Lv, with linear differential operator

L := (s− û)∂x − ûx + ∂xx

and associated eigenvalue problem λv = Lv. To put the eigenvalue equation in integrated

coordinates, we integrate both sides from −∞ to x and substitute w =
∫ x
−∞ v to get

λw = (s− û)w′ + w′′. (1.14)

Example 1.8. Consider the essential spectrum of the eigenvalue problem for Burgers equa-

tion. By taking the Fourier transform of the eigenvalue problem linearized about u±, we see

9
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that the essential spectrum must be to the left of the curves given by

λ = −i(u± − s)ξ − ξ2,

= ±iu− − u+

2
ξ − ξ2, ξ ∈ R.

These curves define a parabola in the left half of the complex plane that touches the origin

at ξ = 0.

Example 1.9. We will use an energy estimate to show stability for Burgers equation. Mul-

tiplying both sides of (1.14) by w and integrating over the real line, we obtain

λ

∫
R
|w|2 =

∫
R
(s− û)ww′ +

∫
R
ww′′.

Integration by parts gives

∫
R
ww′′ = ww′|∞−∞ −

∫
R
|w′|2,

= −
∫
R
|w′|2,

so

λ

∫
R
|w|2 =

∫
R
(s− û)ww′ −

∫
R
|w′|2.

Integrating (s− û)ww′ by parts gives

∫
R
(s− û)ww′ = (s− û)ww|∞−∞ −

∫
R
(s− û)w′w +

∫
R
wwû′,

2<
(∫

R
(s− û)ww′

)
=

1

2

∫
R
|w|2û′.

10
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From (1.13) we have û′ < 0. This leads us to

<(λ) < 0.

A similar proof can be used to show spectral stability for the general scalar conservation

law

ut + f(u)x = (b(u)ux)x;

see [21] for further examples of energy estimates.

1.3 The Evans function

The study of spectral stability of a traveling wave begins with bounding its essential spectrum

to the left half-plane. After the essential spectrum has been bounded, the point spectrum in

the right half-plane can be analyzed using the Evans function. Recall that the point spectra

of a traveling wave û consists of values λ for which there are nontrivial solutions v of the

eigenvalue equation

λv = Lv = (s∂x +DF(û))v. (1.15)

The Evans function is defined as the Wronskian of decaying solutions of (1.15), and is

analytic to the right of the essential spectrum. It serves as a “characteristic function” for

the linearized operator, analagous to the characteristic polynomial for matrices—its roots

correspond in both location and multiplicity to the eigenvalues of the operator. The Evans

function can rarely be given as a closed-form, analytic expression. This has been done only

for simple systems, such as Burgers equation. Numerical Evans function computation allows

us to study physical systems with much greater complexity.

11
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Equation (1.15) can be rewritten as a first order system

d

dx
W = A(x;λ)W, W ∈ Cn,

W (±∞) = 0.

(1.16)

Thus eigenvalues of (1.15) are those values of λ for which there is a nontrivial solution W

of (1.16). The Evans matrix A(x;λ) is asymptotically constant since û is asymptotically

constant; thus we can define

A±(λ) = lim
x→±∞

A(x;λ).

We will assume that A±(λ) are consistently split, so that

dimU±(λ) = k, dimS±(λ) = n− k,

where U±(λ) and S±(λ) are the unstable and stable eigenspaces of A±(λ).

Let U−(x;λ) denote the unstable manifold of initial conditions at x whose solutions decay

exponentially as x→ −∞, and S+(x;λ) the stable manifold of initial conditions at x whose

solutions decay exponentially as x → +∞. Thus equation (1.16) has a nontrivial bounded

solution exactly when U−(x;λ)∩S+(x;λ) 6= ∅. If W−(x;λ) and W+(x;λ) are matrices whose

columns consist of analytically varying bases for U−(x;λ) and S+(x;λ) respectively, then the

Evans function can be defined by

D(λ) = det

([
W− W+

])∣∣∣
x=0

(1.17)

Here W+(x;λ) = [W+
k+1(x;λ), . . . ,W+

n (x;λ)] represents the n − k decay modes of A+(λ),

and W−(x;λ) = [W−
1 (x;λ), . . . ,W−

k (x;λ)] represents the k growth modes of A−(λ). We note

that D(λ) = 0 exactly when W−
1 , . . . ,W

−
k ,W

+
k+1, . . . ,W

+
n are linearly dependent. Linear

dependence results in a solution W of (1.16), an eigenfunction, that connects U−(x;λ) and

S+(x;λ) at x = 0.

12
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Since W−
i (x;λ) is a growth mode of A−(λ), W−

i is a solution of (1.16) satisfying

W−
i (x;λ) ∼ eµ

−
i xr−i , x << 0,

where r−i is the eigenvector associated with positive eigenvalue µ−i in the spectrum of A−(λ).

Thus for L sufficiently large W−
i (x;λ) may be approximated by the solution of

d

dx
Wi = A(x;λ)Wi,

Wi(−L) = e−µ
−
i Lr−i .

(1.18)

Similar statements hold for decay modesW+
i (x;λ) of A+(λ). To ensure the analyticity of each

W±
i (x;λ), and therefore the analyticity of D(λ), it is necessary to compute an analytically

varying basis ri(λ) of the eigenspace associated with µi. This can be done conveniently using

the method of Kato.

1.3.1 Adjoint formulation of the Evans function. There is an alternative char-

acterization of the Evans function which is often used in the case that k < n/2. Let

W̃+(x;λ) = [W̃1, . . . , W̃k] be a matrix whose columns constitute an analytic basis for the

stable manifold S∗+(x;λ) of the adjoint equation

d

dx
W̃ = −A(x;λ)∗W̃

near x = +∞. Specifically, let µ̃+
1 , . . . , µ̃

+
k be the growth modes of −A+(λ)∗, and r̃+

1 , . . . , r̃
+
k

the associated analytic eigenvectors. W̃i can be found by solving the IVP

d

dx
W̃i = −A(x;λ)∗W̃i,

W̃ (+L) = eµ̃
+
i Lr̃+

i .

(1.19)

13
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An alternate Evans function can be defined by

det
(
W̃ ∗

+W−

)∣∣∣
x=0

. (1.20)

Note that det
(
W̃ ∗

+W−

)
= 0 precisely when there is some choice of constants c1, . . . , ck,

not all zero, so that

W̃ ∗
+(c1W

−
1 + . . .+ ckW

−
k ) = 0.

Consider W̃i and Wj where W̃i is a solution of (1.19) and Wj is a solution of (1.18). It is

straightforward to show that (W̃ ∗
i Wj)

′ = 0, implying that W̃ ∗
i Wj is a constant. Moreover

we find that W̃ ∗
i (+∞)Wj(+∞) = r̃∗i rj = 0, since r̃∗i is a left eigenvector of A+(λ) with

an eigenvalue with positive real part, and thus is orthogonal to rj. Since the orthogonal

complement of the space spanned by the columns of W̃+ is the space spanned the columns

of W+, this Evans function is zero exactly when W− and W+ intersect.

14
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Chapter 2. Numerical computation of the

Evans Function

2.1 Computation of the wave profile

Our numerical stability program relies on determining the existence of nontrivial bounded

solutions of the Evans system

d

dx
W = A(x;λ)W, W ∈ Cn,

W (±∞) = 0.

(2.1)

The x-dependence in the Evans matrix A(x;λ) typically comes from specific translates of

the traveling wave solution and its derivatives. Since there generally is no known explicit

formula for the traveling wave solution of a nonlinear PDE, we outline the basics of their

numerical solution.

We will restrict our attention to traveling waves with asymptotic boundary conditions.

These waves satisfy a boundary value problem on an infinite domain,

− su′ = f(u, u′, u′′, . . .),

u(±∞) = u±, u(n)(±∞) = 0, n = 1, 2, . . . .

(2.2)

This can be written as a first order system

U ′ = F (U), U ∈ Rn,

U(±∞) = U±.

(2.3)

A traveling wave corresponds to a homoclinic or heteroclinic orbit connecting fixed points

in the phase space of (2.3). When u− = u+ the traveling wave is a pulse, and exists as a

homoclinic orbit in phase space. For u− 6= u+ the traveling wave is a front and corresponds

to a heteroclinic orbit. Proving the existence of a connecting orbit between equilibrium
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points is an important task. There is a standard body of mathematical tools like Lyapunov

methods, asymptotic methods, and other topological methods dedicated to demonstrating

existence. Here we will content ourselves with discussing their numerical solution.

Boundary conditions. Since the profile ODE (2.3) is autonomous, each solution is trans-

lationally invariant in x. Any traveling wave solution û(x) is a member of a family of solutions

{u(x + δ)}, δ ∈ R. A phase condition is required to identify a particular translate of the

wave. Because the wave corresponds to a connecting orbit in phase space, projective condi-

tions must be imposed to specify how the wave approaches its end states. In any numerical

solver, the computational domain must be truncated to some finite interval [−L,L], where

L > 0 is large enough to capture the asymptotic nature of the wave. The phase condition is

typically imposed at x = 0, and the projective conditions at x = ±L.

Let X±S , X±U be the stable and unstable eigenspaces for dF (U±), and let Π±S , Π±U be the

eigenprojections onto their respective eigenspaces. As x→ −∞, the solution U approaches

its end state U− along the unstable eigenspace of dF (U−). Similarly, near x = +∞ the

solution U will approach U+ along the stable eigenspace of dF (U+). We can enforce this by

imposing the projective conditions

Π−S (U(−L)− U−) = 0,

Π+
U(U(+L)− U+) = 0.

(2.4)

Formulation for a BVP solver. This combination of projective conditions and a phase

condition leaves us with a condition in the middle of the computational domain. To obtain

a two-point boundary value problem, we double the ODE by flipping the solution on one

side to the other. This takes us from an n-dimensional ODE

U ′ = F (U), x ∈ [−L,L], U ∈ Rn

16
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to the 2n-dimensional ODE

U
V


′

=

 F (U)

−F (V )

 , x ∈ [0, L], U, V ∈ Rn.

To this last system we add n “matching” conditions U(0) = V (0). If the boundary value

problem has been properly formulated, the number of boundary conditions and the number

of ODEs will match up. Sometimes the wave speed s must also be solved numerically—in

this case, the ODE can be augmented with the equation s′ = 0.

Many BVP solvers rely on an advanced implementation of Newtons method; any non-

linear BVP solver will require an initial guess. Tanh and sech functions can often be used

to provide satisfactory initial guess functions for fronts and pulses, respectively. However,

interesting physical systems usually have one or more tunable parameters with a parameter

space over which wave profiles must be computed. In portions of their parameter space, it

can be difficult to provide initial guesses that will converge inside a BVP solver. In these

cases numerical continuation can be used to construct each initial guess for the wave profile

as parameter values vary.

Our stability analysis of traveling waves will depend on the numerical library STABLAB,

implemented in MATLAB and more recently in Python. Good BVP solvers used in STA-

BLAB include bvp4c, bvp5c, and bvp6c, which employ fourth, five, and sixth order collo-

cation, respectively. Each of these solvers is implemented in MATLAB. The function bvp6c

has recently been ported to Python; see [4].

Example 2.1. Slemrod’s model for isentropic gas dynamics with capillarity in one spatial

dimension has equations

vt − ux = 0,

ut + p(v)x =
(ux
v

)
x
− dvxxx.

(2.5)

Dependent variables v and u represent specific volume and velocity in Lagrangian coordi-

17



www.manaraa.com

nates, respectively. The function p(v) is the pressure law for an adiabatic gas and d ≥ 0

represents capillarity strength.

Traveling wave solutions (u, v)(x, t) = (û, v̂)(x− st) satisfy the profile equations

−sv′ − u′ = 0,

−su′ + p(v)′ =

(
u′

v

)′
− dv′′′.

Rescaling with (x, u) → (−sx,−u/s) and substituting the first equation into the second

equation yields the single scalar equation

v′ + ap(v)′ =

(
v′

v

)′
− dv′′′

where a = 1/s2.

Integrating from −∞ to x we obtain a lower-order profile ODE

v − v− + a(p(v)− p(v−)) =
v′

v
− dv′′. (2.6)

The constant a determined by the Rankine-Hugoniot condition is found in limit as x→∞:

a = − v+ − v−
p(v+)− p(v−)

.

Without loss of generality, and by a possible rescaling, we can assume that 0 < v+ < v− = 1.

The gas law used has the form p(v) = v−γ, γ ≥ 1 ([5, 15, 16]).

Letting y = [v, v′]T , (2.6) can be rewritten as a first order system y′ = F (y) where

F (y) =

 y2

1
d
[y2/y1 + (1− y1) + a(1− y−γ1 )]

 .
Inspecting the eigenvalues of dF (y±) reveals that there is one projective condition at +∞.
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The ODE can be transformed to the interval [0,∞) by letting z(x) = y(−x) represent

the left half of the traveling wave. The resulting two-point boundary value problem has

four dimensions and four boundary conditions—two matching conditions, one projective

condition, and a phase condition:

y
z


′

=

 F (y)

−F (z)

 , x ∈ [0, L], y, z ∈ R2,

y(0) = z(0),

Π+
U(y(+L)− y+) = 0,

y1(0) =
v− + v+

2
.

(2.7)

The traveling wave becomes difficult to compute as capillarity strength d increases and

large oscillations develop. Numerical continuation can be used to provide initial guesses in

bvp6c; see Figures 2.1 and 2.2.

Figure 2.1: The wave profile for Slemrod’s capillarity model, also shown in state space. The
capillarity strength is d = 2.

19



www.manaraa.com

Figure 2.2: The wave profile for Slemrod’s capillarity model, with capillarity strength d = 60.

Example 2.2. Here we describe the numerical solution of traveling waves in a model describ-

ing one-dimensional combustion of a fuel with a high Lewis number [11]. In nondimensional

coordinates its equations are

ut = uxx + yΩ(u),

yt = εyxx − βyΩ(u).

(2.8)

Dependent variables u and y are scaled temperatures and fuel concentration, respectively.

The inverse Lewis number and exothermicity are represented by ε and β. The reaction rate

is described by the function

Ω(u) =


e−1/u for u > 0

0 otherwise.

Equation (2.8) has traveling wave solutions

(u, y)(x, t) = (û, ŷ)(x− st) (2.9)

with asymptotically constant end states (u−, y−) = (1/β, 0), (u+, y+) = (0, 1). At x = −∞

the fuel has been burned and the heat maximized, while at +∞ the fuel is unburned and we
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are at ambient temperature.

Substituting (2.9) into (2.8) leads to the profile ODEs

u′′ + su′ + yΩ(u) = 0,

εy′′ + sy′ − βyΩ(u) = 0.

(2.10)

This can be rewritten as a first order system



y1

y2

y3

y4



′

=



y2

−sy2 − y3Ω(y1)

y4

1
ε
(−sy4 + βy3Ω(y1))


(2.11)

with end states



y1

y2

y3

y4


(−∞) =



1
β

0

0

0


,



y1

y2

y3

y4


(+∞) =



0

0

1

0


. (2.12)

where [y1, y2, y3, y4]T = [u, u′, y, y′]T . This system has four dimensions and five projective

conditions, leading us to look for a further simplification.

From equations (2.10) it follows that

βu′′ + βsu′ + εy′′ + sy′ = 0.

We then integrate from −∞ to x find the conserved quantity

βu′ + βsu+ εy′ + sy = s,
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or written differently,

y3 =
1

s
[s− βsy1 − βy2 − εy4] . (2.13)

This conserved quantity allows to define z1 = y1, z2 = y2, z3 = y4, and reformulate the profile

ODE as


z1

z2

z3


′

=


z2

−sz2 − 1
s

[s− βsz1 − βz2 − εz3] Ω(z1)

1
ε
(−sz3 + β

s
[s− βsz1 − βz2 − εz3] Ω(z1))

 , (2.14)

which we may refer to simply as z′ = F (z). This new system has three projective conditions

at ±∞, and one phase condition at x = 0. Doubling the dimension of the system leads to a

dimension six BVP

Z1

Z2


′

=

 F (Z1)

−F (Z2)

 , x ∈ [0, L], Z1, Z2 ∈ R3, (2.15)

with an additional three matching conditions Z1(0) = Z2(0). Since the wave speed s > 0 is

still unknown, the system is supplemented with an additional equation s′ = 0. This results

in a system with seven dimensions and seven boundary conditions.

Remark. This system highlights several possible difficulties involved with obtaining traveling

wave profiles. First, it is important to verify that the number of boundary conditions matches

the dimension of the system. The solution of traveling waves u and y depended on discovering

a conserved quantity and reducing the dimension of the ODE. Second, the wave speed s is

unknown, and must be found numerically by adding a supplementary ODE s′ = 0. Third, the

size of the computational domain [−L,L] grows considerably as the exothermicity parameter

β increases. It is helpful to rescale (2.15) to the interval [0, 1] and to treat L as a tunable
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Figure 2.3: Traveling wave solutions û and ŷ.

parameter. In full, the BVP can be written


Z1

Z2

s


′

=


LF (Z1)

−LF (Z2)

0

 , x ∈ [0, 1], Z1, Z2 ∈ R3,

Z1(0)− Z2(0) = 0, u(0)− u− + u+

2
= 0,

Π+
S (Z1(1)− [0, 0, 0]T ) = 0, Π+

U(Z2(1)− [1/β, 0, 0]T ) = 0.

(2.16)

2.2 Polar coordinate method

Let U−(λ) be the unstable manifold of A−(λ) and S+(λ) the stable manifold of A+(λ). Let

W−(λ) and W+(λ) be n × k and n × (n − k) matrices whose columns form analytic bases

for U−(λ) and S+(λ) at x = ±∞, respectively. We can find orthonormal matrices k × n

and n − k × n matrices Ω−(λ) and Ω+(λ) with change-of-basis matrices α−(λ) and α+(λ)

satisfying

W± = Ω±α±.

23



www.manaraa.com

This can be written in block matrix form as

[
W− W+

]
=

[
Ω− Ω+

]α− 0

0 α+

 .
Using this decomposition, the Evans function can be written

D(λ) = det

([
W− W+

])∣∣∣
x=0

= γ− γ+ det

([
Ω− Ω+

])∣∣∣
x=0

, (2.17)

where γ± = det(α±).

2.2.1 Continuous orthogonalization. Suppose W = Ωα where W,Ω ∈ Cn×k and Ω is

orthonormal. Using the Evans system we obtain

Ω′α + Ωα′ = AΩα.

Letting B = α′α−1 leads to the system of equations

Ω′ = AΩ− ΩB,

α′ = Bα.

(2.18)

The dimension of (2.18) is greater than the original Evans system, and requires additional

constraints. These can be found by using the orthonormality of Ω,

0 = I ′ = (Ω∗Ω)′ = (Ω∗)′Ω + Ω∗Ω′,

= (Ω∗A∗ −B∗Ω∗)Ω + Ω∗(AΩ− ΩB),

= Ω∗(A∗ + A)Ω−B∗Ω∗Ω− Ω∗ΩB,

= Ω∗(A∗ + A)Ω−B∗ −B.

When system (2.18) is initialized with Ω∗∞Ω∞ = I, it turns out that Ω∗(A∗+A)Ω−B∗−
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B = 0 is a necessary and sufficient condition for orthonormality, since (Ω∗Ω)′ = 0 implies

that Ω∗Ω is constant. This allows a variety of choices for B. Notable choices include Drury’s

method (B = Ω∗AΩ) and Davey’s method (B = (Ω∗Ω)−1Ω∗AΩ). Drury’s method can also

be derived by setting Ω∗Ω′ = 0, so that the change in Ω is orthogonal to the space spanned

by Ω.

Substituting B = Ω∗AΩ in (2.18), we arrive at the equations

Ω′ = (I − ΩΩ∗)AΩ,

α′ = (Ω∗AΩ)α.

(2.19)

Using Abel’s equation, (2.19) results in the scalar equation

γ′ = trace(Ω∗AΩ)γ

where γ = det(α).

2.2.2 Computation of γ(x). The condition that Ω∗Ω′ = 0 states that all change in Ω

must occur orthogonal to the span of Ω; the exponential growth once seen in the evolution of

W is now seen in the evolution of γ. To deal with this, we replace the exponentially growing

γ with the rescaled

γ̃±(x) := γ±e
−trace(Ω∗AΩ)±x.

This results in

γ̃′±(x) = trace(Ω∗AΩ− (Ω∗AΩ)±)γ̃±. (2.20)
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We note that γ(0) can be replaced with γ̃(0) in (2.17). The rescaled variable γ̃ is essential

for good numerical results, and has the form

γ̃−(x) = e
∫ x
−∞ trace(Ω∗AΩ(x)−Ω∗−A−Ω−) dsγ̃−(−∞),

γ̃+(x) = e
∫+∞
x −trace(Ω∗AΩ(x)−Ω∗+A+Ω+) dsγ̃+(+∞).

After making the substitution θ−(x) =
∫ x
−∞ trace(Ω∗AΩ(x) − Ω∗−A−Ω−) ds, and defining

θ+(x) similarly, we see that

γ̃±(0) = eθ±(0)γ̃±(±∞), (2.21)

where θ±(x) satisfies the IVP

θ′± = trace(Ω∗AΩ− (Ω∗AΩ)±),

θ±(±∞) = 0.

(2.22)

If a different initial condition is used in (2.22), then the resulting Evans output will differ by

a constant multiplicative factor.

2.2.3 Post-processing with Kato. The method of Kato allows us to compute an an-

alytically varying basis R±(λ) for the growth manifold of A−(λ) and the decay manifold of

A+(λ). Given any orthogonal decomposition Ω(±∞, λ) of the linear span of the column

vectors of R±(λ), there exists a change of basis matrix α̃(±∞, λ), so that

R±(λ) = Ω(±∞, λ)α̃(±∞, λ).
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Thus the appropriate initial value of γ̃ is

γ̃(±∞) = det(α̃(±∞, λ)),

= det (Ω∗(±∞, λ)R±(λ)) .

(2.23)

We note that Ω(±∞, λ) is not analytic in λ; the burden of analyticity is carried by R±(λ).

The Evans function D(λ) arises from the numerical solution of the initial value problem

Ω′(x) = (I − Ω(x)Ω∗(x))A(x, λ)Ω(x),

θ′(x) = trace(Ω∗(x)A(x, λ)Ω(x)− (Ω∗A(λ)Ω)±),

θ(±L) = 0, Ω(±L) = Ω(±∞, λ),

(2.24)

defined on [−L, 0], [0, L] for L > 0 sufficiently large. The Evans function is then given by

D(λ) = γ̃(−∞)γ̃(+∞)eθ−(0)eθ+(0) det

([
Ω− Ω+

])∣∣∣
x=0

, (2.25)

where γ̃(±∞) is computed by post-processing with Kato; see equation (2.23).

2.3 The method of Kato

Recall that the Evans function is defined as

D(λ) = det

([
W−(x;λ) W+(x;λ)

])

where W±(x;λ) are matrices whose columns form analytically varying bases for the unstable

and stable manifolds U−(λ) and S+(λ) of A−(x;λ) and A+(x;λ), respectively. Furthermore,

W±(x;λ) can be made to vary analytically by computing analytic bases {r1, . . . , rk} and

{rk+1, . . . , rn} for the unstable and stable eigenspaces of A−(λ) and A+(λ). This problem can

be solved using the method of Kato; we will describe several numerical schemes introduced

by Zumbrun [29] that are based on Kato’s reduced ODE.
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For a projection P that is analytic in a domain D of the complex plane, it is a well known

result in ODE theory that one can find a basis {r1(λ), . . . , rk(λ)} for the range of P (λ) that

is analytic throughout D. The matrix R(λ) = [r1(λ), . . . , rk(λ)] is a solution of Kato’s ODE

R′ = (P ′P − PP ′)R, ′ =
d

dλ

R(λ0) = R0,

(2.26)

where the columns of R0 = [r1(λ0), . . . , rk(λ0)] form some initial basis for Range P (λ0); see

[23].

Proposition 2.3. Let ′ := d
dλ

and [A,B] := AB − BA be the commutator of A and B.

Consider the ODE

S ′ = [P ′, P ]S,

S(λ0) = I.

(2.27)

From standard linear ODE theory, we note that there is a solution S of (2.27) and it exists

throughout the simply connected domain D. Moreover S satisfies

(S−1PS)(λ0) = P (λ0),

thus defining a globally analytic coordinate change that takes the range of P (λ) to that of

P (λ0).

Proof. Differentiating P 2 = P , and multiplying on the right and on the left by P , shows that

PP ′P = 0. Differentiating I = SS−1 and substituting (2.27) in the resulting expression, we
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see that S−1 satisfies (S−1)′ = −S−1[P ′, P ]. Finally, differentiating S−1PS we obtain

(S−1PS)′ = (S−1)′PS + S−1P ′S + S−1PS ′,

= −S−1[P ′, P ]PS + S−1P ′S + S−1P [P ′, P ]S,

= S−1[−(P ′P − PP ′)P + P ′ + P (P ′P − PP ′)]S,

= S−1[−P ′P + P ′ − PP ′]S,

= 0

Remark. An analytically varying basis {rj(λ)} for P (λ) may then be taken from the columns

of R(λ) = S(λ)R0, where R0 = range P0. Thus the analytic basis vectors rj(λ) satisfy

r′j(λ) = [P ′(λ), P (λ)]rj(λ), rj(λ0) = r0
j . (2.28)

Let R(λ) = [r1(λ) . . . rk(λ)], and note that by the previous results R satisfies R′ =

[P ′, P ]R. Then a first order approximation of this differential equation is

R(λj+1)−R(λj)

λj+1 − λj
≈
[
P (λj+1)− P (λj)

λj+1 − λj
, P (λj)

]
R(λj)

Rearranging, we obtain the first order scheme

Rj+1 = Rj + [(Pj+1 − Pj)Pj − Pj(Pj+1 − Pj)]Rj,

Rj+1 = [I + Pj+1Pj − PjPj+1]Rj.

Finally, to stabilize the scheme we evaluate the RHS with Pj+1, ensuring that Rj+1 is in the

range of Pj+1:

Rj+1 = Pj+1[I + Pj+1Pj − PjPj+1]Rj,

= Pj+1[I + Pj(I − Pj+1)]Rj.
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A reduced version of Kato’s ODE is the initial value problem

R′ = P ′R,

R(λ0) = R0.

(2.29)

By standard linear ODE theory, (2.29) has a unique solution that exists throughout the sim-

ply connected domain D. The solution R(λ) can then be found numerically. An interesting

property of Kato’s ODE is that PR′ = 0, with the direction of change in the basis R is

orthogonal to its span.

Proposition 2.4. The unique solution R of (2.29) satisfies

(i) PR = R,

(ii) PR′ = 0,

(iii) R′ = (P ′P − PP ′)R.

Proof.

(i)

(PR−R)′ = P ′R + PR′ −R′,

= P ′R + PP ′R− P ′R,

= PP ′R− PP ′PR,

= −PP ′(PR−R).

Since (PR−R)(λ0) = 0, by uniqueness of solutions PR−R = 0.

(ii) PR′ = PP ′R = PP ′PR = 0.

(iii) R′ = P ′R = P ′PR = (P ′ − PP ′)R = (P ′P − PP ′)R.
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2.3.1 The reduced Kato ODE. The reduced Kato ODE is given by

R′ = P ′R,

R(λ0) = R0.

(2.30)

This equation is a simplification of (2.27) that is particularly useful in constructing difference

schemes for R(λ).

A first order approximation to (2.30) is

R(λj+1)−R(λj)

λj+1 − λj
=
P (λj+1)− P (λj)

λj+1 − λj
R(λj).

This approximation leads to a simple first order explicit difference scheme

Rj+1 = Rj + Pj+1Rj − PjRj,

= Pj+1Rj.

We now consider a second order discretization of (2.30). Let 4λj := λj+1 − λj. We can

use second order approximations

Rj+1 −Rj ≈ 4λjP ′j+1/2Rj+1/2,

Rj+1/2 ≈ Pj+1/2Rj,

P ′j+1/2 ≈ (Pj+1 − Pj)/4λj,

Pj+1/2 ≈
1

2
(Pj+1 + Pj),
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to build the scheme

Rj+1 −Rj

4λj
= P ′j+1/2Rj+1/2,

Rj+1 −Rj

4λj
=
Pj+1 − Pj
4λj

Pj+1/2Rj,

Rj+1 −Rj =
1

2
(Pj+1 − Pj)(Pj+1 + Pj)Rj,

Rj+1 =
1

2
(Pj+1 + Pj − PjPj+1 + Pj+1Pj)Rj.

After stabilizing this scheme by evaluating the right hand side at Pj+1, we obtain

Rj+1 = Pj+1

(
I +

1

2
Pj(I − Pj+1)

)
Rj. (2.31)

Note that this second order method from the reduced Kato ODE is a relaxation of the first

order method from the original ODE; this method is commonly used for serious computations

(see [29]).
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Chapter 3. Root following techniques

Consider an evolutionary system

ut = F(u, ux, uxx, . . .) (3.1)

with traveling wave solutions û depending on a system parameter µ. As µ varies the eigen-

values of the linearized system λv = Lv can travel from the left half of the complex plane

to the right half-plane and back again. Since the spectral stability of û is determined by the

presence or absence of the point spectrum of L in the right half-plane, we will discuss how

to detect when an eigenvalue has moved into the right half-plane, and how to follow it as it

varies with system parameter µ.

The Evans function D(λ) is an analytic function whose zeros match the eigenvalues

of the linearized eigenvalue problem in both location and multiplicity. We can leverage

the analyticity of the Evans function in rootfinding methods such as Newton’s method or

the secant method. Section 3.1 discusses how the argument principle and winding number

calculations can be used to locate roots of the Evans function.

Eigenvalues of L correspond to nontrivial bounded solutions W of the Evans system

augmented with an equation for λ,

W
λ


′

=

A(x;λ, µ) 0

0 0


W
λ

 , W ∈ Cn. (3.2)

For an eigenvalue λ its corresponding ‘eigenfunction’ W is a homoclinic orbit in the phase

space of the Evans system. Section 3.2 describes a root following technique that formulates

λ and W as functions of µ, and uses continuation to compute (λ,W ) as µ varies; see [19].

Throughout this chapter we will assume that the traveling wave solution U has already been

computed numerically.

33



www.manaraa.com

3.1 The argument principle

Roots of the Evans function can be detected using the Argument Principle from complex

analysis. Suppose f is an analytic function defined on a simple domain containing a closed

positively oriented curve C. If f is nonzero on C, then the number of zeros of f inside C is

the winding number of f(C) about 0, given by

W =
1

2πi

∫
C

f ′(z)

f(z)
dz.

The Argument Principle can be further generalized to the Method of Moments; see

[7, 11, 2]. If f is nonzero on C with roots z1, . . . , zn inside C, then the p-th moment of f

about z∗ is given by

Mp(z
∗) =

1

2πi

∮
Γ

(z − z∗)pf ′(z)

f(z)
=

n∑
k=1

(zk − z∗)p. (3.3)

The zeroth moment of f about 0 is its winding number W, while the first and second moments

give the sum and the sum of squares of the roots, respectively. By calculating the moments

of f with a reliable quadrature rule, we can calculate the position of any roots within C.

This can only be done with low order moments, since calculating the roots of a polynomial

from its coefficients is an ill-conditioned problem.

3.1.1 An efficient algorithm for computing the winding number. Suppose f is

an analytic function, and nonzero on a contour C. If f(C) does not intersect the branch cut

of log(z), then
∫
C
f ′(z)/f(z) dz = log (f(z1))− log (f(z0)) where z0 is the initial point of C

and z1 the terminal point. If f(C) does pass through the branch cut of log(z), then
∫
C
f ′/f

can be approximated by integrating over subcontours Cj for which f(Cj) does not intersect

the branch cut of log(z). As the images f(Cj) approach the branch cut, the sum of their

integrals tends toward
∫
C
f ′/f .

Since log(z) = log |z| + i arg(z), for a closed contour C the integral
∫
C
f ′/f counts how
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(a) A contour C in the right half-plane. (b) The image contour f(C).

Figure 3.1: Roots of a function f in some region can be found by calculating the winding
number of a contour about that region. Here we consider the function f(z) = 2(z − .3 −
.5i)(z − .3 + .5i) about a semicircular contour with radius 1 in the right half-plane.

often and with what orientation f(C) crosses the branch cut. As an example, consider the

function f(z) = 2(z − .3− .5i)(z − .3 + .5i) about a semicircular contour C with radius 1 in

the right half-plane, with C centered at the origin. Since f(C) crosses the branch cut twice

in the counterclockwise direction, we have
∫
C
f ′/f = 2πi + 2πi with winding number two;

see Figure 3.1.

This algorithm for computing the winding number is more accurate and efficient than

using integration. Once an eigenvalue has been detected, a form of the bisection method

can be used to get additional accuracy. Essentially the winding number is computed for

rectangular regions, which are further subdivided to obtain the required accuracy.

3.2 Continuation of the eigenvalue and eigenfunction λ,W

3.2.1 The boundary value problem. Consider the BVP (3.2) defined on (−∞,∞).

The eigenfunction W satisfies n−k projective conditions at −∞ and k projective conditions

at +∞. Because of the scaling invariance of the eigenfunction, an additional scaling condition

is required to fix the size of W at x = 0. This leads to a n+ 1 dimensional BVP with n+ 1

boundary conditions. To continue in (λ,W ) as µ varies, we begin by reformulating the
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n+ 1 dimensional BVP (3.2) defined on (−∞,∞), into a 2n+ 1 dimensional two-point BVP

defined on [0,∞). Letting Y (x) = W (−x), we obtain


W

Y

λ


′

=


A(x;λ, µ) 0 0

0 −A(−x;λ, µ) 0

0 0 0



W

Y

λ

 , x ∈ [0,∞). (3.4)

The boundary conditions corresponding to (3.4) consist of n matching conditions, n

projective conditions at x =∞, and one phase condition to eliminate the scaling invariance

in the eigenfunction solution. Letting P+(λ, µ) be the projection onto the unstable manifold

of A+(λ, µ) and P−(λ, µ) the projection onto the stable manifold of A−(λ, µ), the matching

and projective conditions can be implemented on a truncated interval [0, L] by


W (0)

P+(λ, µ)W (L)

P−(λ, µ)Y (L)

 =


Y (0)

0

0

 , (3.5)

where L > 0 is large enough to capture the asymptotic behavior of the eigenfunction. The

phase condition can be imposed at x = 0 by fixing one coordinate of W or Y.

3.2.2 Constructing an initial guess. For an initial system parameter µ, suppose an

eigenvalue λ ∈ σ(L) and bases W−(x;λ) and W+(x;λ) have been computed for the unstable

and stable manifolds of the Evans system at x = −∞ and x = +∞. Since the Evans function

D(λ) = 0 we can find a vector c where

c =

c−
c+

 ∈ Null

([
W−(x = 0;λ) W+(x = 0;λ)

])
(3.6)

This can be done in several ways, such as least squares or the singular-value decomposi-

tion. From (3.6) we have W−(0;λ)c− + W+(0;λ)c+ = 0, which allows us to construct the
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eigenfunction W (x) and obtain the following initial guess for the BVP:


−W+(x;λ)c+

W−(x;λ)c−

λ

 . (3.7)

Once an initial guess is constructed for µ and the BVP is solved, the parameter can be

updated to µ + ∆µ and the most recent BVP solution used as an initial guess in the new

BVP.

Evolving W±(x;λ) from x = ±∞ to x = 0 is a numerically stiff problem, so we employ the

polar-coordinate method to find our eigenfunction W ; see [20]. Let Ω−(x;λ) and Ω+(x;λ) be

matrices of orthonormal vectors spanning W−(x;λ) and W+(x;λ), respectively. Then there

are coordinate frames α−(x;λ) and α+(x;λ) such that

W±(x;λ) = Ω±(x;λ)α±(x;λ). (3.8)

Thus manifolds W±(x;λ) are constructed by evolving (Ω±(λ), α±(λ)) from x = ±∞ to 0

according to the ODE

Ω′ = (I − ΩΩ∗)AΩ,

α′ = (Ω∗AΩ)α,

(3.9)

described more fully in Section 2.2.1. Plugging W±(x;λ) into (3.7) gives us our initial guess.

Prior to continuing (λ,W ) in µ, it is good practice to solve (3.4) with the initial guess

(3.7) for the initial parameter µ to refine the estimate on the (λ,W ) pair. Because errors

in computing (3.6) result in a discontinuity in the estimated eigenfunction, this fine-tuning

provides a better initial guess.
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3.3 Experiments

Here we apply our root following method to three different models. The first two models are

canonical examples within the Evans function literature, because their traveling wave profiles

have analytic expressions. We then apply our method to a combustion model whose traveling

wave profile is difficult to compute—in fact, it is necessary to use numerical continuation to

compute both the wave profile and the eigenvalue-eigenfunction pair.

Our computations have been carried out using the numerical library stablab. stablab

was developed by Humpherys et al [4] in matlab, and implements the Evans function

utilities described in this text. There are several two-point BVP solvers implemented in

matlab that can be used for computing wave profiles and eigenfunctions. We have used

bvp6c, a sixth order extension of the Lobatto method implemented in bvp4c; see [12] for

details. Our absolute and relative tolerances have been set to 10−8 and 10−6, respectively.

The basic functionality of stablab and bvp6c has recently been ported to Python, where

these experiments have also been verified.

For each of these systems, as the traveling wave becomes unstable we compute the

eigenvalue-eigenfunction pair using the Drury method of continuous orthogonalization; see

Section 2.2.1. We have used ode45, a matlab-implementation of the Dormand–Prince

Runge–Kutta algorithm [8], with the same settings for the absolute and relative tolerances

as in bvp6c. After an estimate of the eigenvalue-eigenfunction pair has been found, the

estimate is refined using the BVP formulation (3.4). The BVP then allows us to continue in

(λ,W ) as system parameters vary.

It is interesting to note that this system of root tracking allows us to follow the roots

of the combustion model beyond where they were able to be followed in [11] using regular

Evans function computation.
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3.3.1 The “good” Boussinesq equation. Here we examine solitary wave solutions of

the “good” Boussinesq equation

utt = uxx − uxxxx − (u2)xx. (3.10)

Making the ansatz u(x, t) = û(x− st), where s is the wave speed, it can be shown that these

solutions of Boussinesq equation have the form

û(x, t) =
3

2
(1− s2) sech2

(√
1− s2

2
(x− st)

)
. (3.11)

These waves are stable for 1
2
≤ |s| < 1 and unstable for 0 < |s| < 1/2; see [1, 20].

Translating (3.10) into the moving frame (x, t) → (x − st, t) the solitary waves (3.11)

become stationary. By linearizing the PDE about its steady-state solution û we obtain the

eigenvalue problem

λ2u− 2sλu′ = (1− s2)u′′ − u′′′′ − (2ûu)′′. (3.12)

This can be written as a first-order system W ′(x) = A(x;λ, s)W (x) where

A(x;λ, s) =



0 1 0 0

0 0 1 0

0 0 0 1

−λ2 − 2ûxx 2λs− 4ûx (1− s2)− 2û 0


and W =



u

u′

u′′

u′′′


. (3.13)

Our procedure begins at s = 0.48 with locating the unstable eigenvalue λ after it has

crossed into the right half-plane. Once λ has been found, the eigenfunction W is found using

the polar coordinate method introduced in (2.19).
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Figure 3.2: The eigenfunction W associated with the eigenvalue λ of the Boussinesq equation
for s = 0.48. W was first approximated using the polar coordinate method, which provides
an initial guess that BVP (3.4) refines further.

3.3.2 The generalized Korteweg-de Vries equation. Here we examine solitary wave

solutions of the generalized Korteweg-de Vries equation (gKdV)

ut + uxxx + (1/p)(up)x = 0, p ≥ 2. (3.14)

Making the substitution u(x, t) = û(x− st) into the PDE, we can find wave solutions of the

form

û(x, t) =

(
p(p+ 1)

2
sech2

(
1− p

2
(x− st)

))1/(p−1)

. (3.15)

These solutions are known to be stable when p < 5 and unstable when p > 5; see [26].

Translating (3.14) into the moving frame (x, t) → (x− st, t), the solitary waves become

stationary. The eigenvalue problem is then obtained by linearizing the PDE about the steady

state û:

λu− su′ + u′′′ + (ûp−1u)′ = 0. (3.16)

This problem can be further simplified by making the substitution u → u′, and integrating
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Figure 3.3: The unstable eigenvalue λ of the “good” Boussinesq equation, graphed as a func-
tion of the wave speed s for 0.005 ≤ s ≤ 0.48. These eigenvalues were followed numerically
using the continuation approach developed in Section 3.2.

from −∞ to x to get

λu− su′ + u′′′ + ûp−1u′ = 0. (3.17)

In these integrated coordinates the eigenvalue problem has the exact same spectrum, with

the sole exception that the eigenvalue at the origin has been removed; see [5, 18] and their

references for more information. This has the effect that the Evans function can be computed

on contours that pass through the origin. The eigenvalue problem can be rewritten as a first

order linear system W ′(x) = A(x;λ, p)W (x) where

A(x;λ, p) =


0 1 0

0 0 1

−λ s− ûp−1 0

 and W =


u

u′

u′′

 . (3.18)

As p increases and passes through 5, a single real eigenvalue crosses from the left half

plane into the right half plane thus signaling the onset of instability. At p = 5.2 we find the

unstable eigenvalue at λ = 0.098 by plotting D(λ) as a function of λ > 0 and inspecting the
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Figure 3.4: The unstable eigenvalues λ of the gKdV equation, graphed as a function of p for
5.2 ≤ p ≤ 10. These eigenvalues were followed numerically using the continuation approach
developed in Section 3.2.

root on the positive real axis. We find the eigenvalue-eigenfunction pair at p = 5.2 as before

by using the polar-coordinate method and then shoring up the eigenvalue-eigenfunction pair,

by solving (3.4) with the previous solution as the initial guess. We then continue in λ via

(3.4) and trace out the resulting values of λ as p varies from 5.2 to 10; see Figure 3.4 for a

graph of the output.

Finally, we compare the speed of the root following method by comparing it with root-

finding the Evans function via the secant method. In Table 3.1, we show that the root

following method is faster when compared to the same accuracy.

3.3.3 High Lewis number combustion. To test this method on a more challenging

problem, we examine a reaction diffusion model that describes the evolution of combustion
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Figure 3.5: The eigenfunction W associated with the eigenvalue λ of the gKdV equation for
p = 5.2. The eigenfunction W was first approximated using the polar coordinate method, to
obtain an initial guess for BVP (3.4) to refine the solution.

waves in one spatial dimension. Consider the partial differential equation

ut = uxx + yΩ(u),

yt = εyxx − βyΩ(u),

(3.19)

where u = u(x, t) and y = y(x, t) denote, respectively, the scaled temperature and concen-

tration of the fuel. We denote ε = 1/Le ≥ 0 as the reciprocal of the Lewis number, which

represents the ratio of the fuel diffusivity to the heat diffusivity, β > 0 as the exothermicity,

which is the ratio of the activation energy to the heat of the reaction, and Ω(u) as the ignition

function

Ω(u) =


e−1/u for u > 0,

0 otherwise,

which is a smooth Arrhenius law, where the reaction starts at the ambient temperature

u = 0.
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secant method continuation
∆p ave steps ave
0.1 0.94 sec 8.9 0.59 sec
0.05 0.97 sec 8.3 0.41 sec
0.01 0.72 sec 7.3 0.27 sec
0.005 0.71 sec 7.2 0.25 sec

Table 3.1: We compare average computation time for two methods, Newton’s method (se-
cant) and our continuation method, of tracking the roots of the Evans function for the gKdV
equation throughout the parameter space 5.2 ≤ p ≤ 10. We also include the average number
of secant iterations required for each value of p.

Figure 3.6: Wave profiles for u and y, the scaled temperature and concentration of the fuel,
for parameter values β = 7, ε = 0.1.

Traveling wave solutions of (3.19) may be found by substituting (u, y)(x, t) = (û, ŷ)(x−st)

into (3.19) and solving the resulting system of equations

û′′ + sû′ + ŷΩ(û) = 0,

εŷ′′ + sŷ′ − βŷΩ(û) = 0.

(3.20)

We note that s represents the (unknown) speed of the traveling wave, and traveling wave

solutions must satisfy boundary conditions (û, ŷ)(−∞) = (1/β, 0), (û, ŷ)(∞) = (0, 1), and

(ûx, ŷx)(±∞) = (0, 0).
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By substituting z1 = u, z2 = u′, z3 = y, and z4 = y′ and using the conserved quantity

βu′+βsu+ εy′+ sy = s, we simplify (3.20) to the three dimensional first-order system given

by U ′ = f(U), where

U =


z1

z2

z4

 and f(U) =


z2

−sz2 −
(

1− βz1 −
β

s
z2 −

ε

s
z4

)
Ω(z1)

1

ε

[
−sz4 + β

(
1− βz1 −

β

s
z2 −

ε

s
z4

)
Ω(z1)

]
 , (3.21)

with boundary conditions

U− := U(−∞) =


1

β

0

0

 and U+ := U(+∞) =


0

0

0

 .

We remark that it is non-trivial to compute the traveling wave profiles for large values of

exothermicity. The typical approach is to compute the profile in a less challenging parameter

regime and then continue the profile to the desired parameters; see [11] for details.

By transforming (3.19) into a moving frame coinciding with (3.20) and (3.21), the trav-

eling wave becomes stationary, and thus we can linearize about the steady-state solution,

thus arriving at the eigenvalue problem

λu = uxx + sux + e−1/ûy + ŷû−2e−1/ûu,

λy = εyxx + syx − βe−1/ûy − βŷû−2e−1/ûu,

(3.22)

45



www.manaraa.com

6 8 10 12 14 16 180

1

2

3

4

5

6

7

8x 10−5

Re
(λ

)

β 

Student Version of MATLAB

6 8 10 12 14 16 18−8

−6

−4

−2

0

2

4

6

8x 10−4

Im
(λ

)

β 

Student Version of MATLAB

(a) (b)

Figure 3.7: The unstable eigenvalues found using the continuation method for fronts in the
system (3.19) for 7.05 ≤ β ≤ 17.5 and ε = 0.1.

which can be written as a first-order system W ′(x) = A(x;λ, β)W (x), where

A(x;λ, β) =



0 1 0 0

λ+ ŷû−2e−1/û −s −e−1/û 0

0 0 0 1

β

ε
ŷû−2e−1/û 0

1

ε
(λ+ βe−1/û) −s

ε


and W =



u

u′

y

y′


.

A spectral analysis of wave fronts in this system has been recently studied in [11]. The

wave fronts are known to be unstable as the exothermicity parameter β > 0 gets large. In

this case a complex conjugate pair of eigenvalues has been viewed crossing into the right-half

plane at about β = 7.03. Thus we locate the eigenvalues using the method of moments given

in Equation (3.3) and described in [7, 2, 11]. We then find the corresponding eigenfunctions

using the method described in Section 3.2. Finally we shore up the eigenvalue-eigenfunction

pair by recomputing via (3.4). We are then ready to continue the pair in β to trace out the

path of the root of the Evans function and thus the corresponding unstable eigenvalues of

the problem. As β continues to increase from β = 7.03 to β = 17.5, the eigenvalues join and

then split along the reals, and begin heading toward the origin; see Figure 3.7 and Table 3.2

for details.
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Figure 3.8: This is a graph of the eigenfunction W (x) associated with the unstable eigenvalue
λ = (1.3e-5 + i6.32e-4) for β = 7.1, ε = 0.1.

In [11], the eigenvalues were tracked in β by partitioning the admissible region of the

right-half plane into increasingly small cells and integrating along their boundaries. With

the continuation method, root following is quick and essentially automatic with only a little

effort at the point where the eigenvalues collide. This is remedied by perturbing the initial

guesses with positive and negative bump functions to put the initial guesses into different

basins of attraction.

We note that in [11], there was difficulty resolving the roots of the Evans function beyond

β = 14.1 using root location methods. By contrast, with the continuation method presented

here, we were able to go past β = 17. This suggests that the continuation method presented

here may be a good general approach for exploring the unstable spectrum in parameter

regions that are too extreme for Evans function computation.
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β λ1 λ2 L Max Residual
8 7.3e-5 + i2.5e-4 7.3e-5 - i2.5e-4 631 2.5e-10
9 5.8e-5 + i7.9e-5 5.8e-5 - i7.9e-5 1084 6.2e-10
10 3.3e-5 + i1.4e-5 3.3e-5 - i1.4e-5 1860 1.4e-9
11 2.8e-5 6.5e-6 3191 3.6e-9
12 1.5e-5 1.7e-6 5477 7.3e-9
13 7.0e-6 4.8e-7 9398 9.8e-9
14 3.2e-6 1.5e-7 16127 9.2e-9
15 1.4e-6 4.5e-8 27674 9.7e-9
16 6.0e-7 1.4e-8 47488 4.5e-9
17 2.5e-7 4.6e-9 81490 8.9e-9

Table 3.2: Eigenvalues for the combustion equation, with the error returned from bvp6c.
The exponentially growing numerical domain [−L,L] illustrates the difficulty in computing
the wave profiles.
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Chapter 4. Detonations in the multi-D

reactive Navier-Stokes equations

Figure 4.1: The first of a series of three detonations during Operation Sailor Hat in 1965. 500
tons of TNT were detonated to simulate the effects of a nuclear explosion. Public domain
image.

4.1 The reactive Navier-Stokes equations in one dimension

Most models for detonations regard viscous effects as negligible during the combustion pro-

cess. Thus detonations are usually investigated mathematically with the Zel’ldovich-von

Neumann-Döring (ZND) or the inviscid reactive Euler equations. The program of determin-

ing the spectral stability of inviscid detonation waves was begun by Erpenbeck in the 1960s

[10, 9]. Here we review recent work done by Barker, Humpherys, Lyng, and Zumbrun [3]

on the stability of viscous detonations in the reactive Navier-Stokes equations in one spa-

tial dimension. They found important differences caused by introducing viscosity. Indeed,

when viscosity is present unstable eigenvalues return to the left half of the complex plane as

activation energy increases.
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The equations for a one dimensional reaction following Navier-Stokes are

τt − ux = 0,

ut + px =
(µux
τ

)
x
,(

e+
u2

2

)
t

+ (pu)x =

(
µuux
τ

+
κTx
τ

)
x

+ qkφ(T )z,

zt = −kφ(T )z +

(
βzx
τ 2

)
x

.

(4.1)

Dependent variables τ, u, e, and z represent specific volume, velocity, internal energy, and

the mass fraction of the reactant. The “viscous effects” modeled by the RNS system, and

ignored by standard ZND studies of detonations, are controlled with parameters µ, κ, and

β. These constants signify viscosity, heat conductivity, and species diffusivity, respectively.

Constants q and k > 0 represent collision frequency and the energy difference between the

reactant and the product. Energy e satisfies the ideal gas law, e = cvT. The ignition function

φ serves as an on/off switch for the reaction, and has the Arrhenius form

φ(T ) =


exp(−EA/[cv(T − Tig)]) if T ≥ Tig,

0 otherwise.

A traveling wave solution (τ, u, e, z)(x, t) = (τ̂ , û, ê, ẑ)(x − st) of (4.1) is a steady state

solution of

τt − sτx − ux = 0,

ut − sux + px =
(µux
τ

)
x
,(

e+
u2

2

)
t

− s
(
e+

u2

2

)
x

+ (pu)x =

(
µuux
τ

+
κTx
τ

)
x

+ qkφ(T )z,

zt − szx = −kφ(T )z +

(
βzx
τ 2

)
x

.

(4.2)

50



www.manaraa.com

Figure 4.2: RNS wave profiles in Lagrangian coordinates with EA = 7.1.

Substituting ν = κ/cv and rescaling by

(x, t)→
(
τ+sx

L
,
τ+s

2t

L

)
,

(τ, u, e)→
(
τL

τ+

,
uL

τ+s
,
eL2

τ 2
+s

2

)
,

(q, k, β, EA)→
(
qL2

τ 2
+s

2
,
kL

τ+s2
,
βL

τ+

,
EAL

2

τ 2
+s

2

)
,

(4.3)

leads to the PDE

τt − τx − ux = 0,

ut − ux + px =
(µux
τ

)
x
,(

e+
u2

2

)
t

−
(
e+

u2

2

)
x

+ (pu)x =
(µuux

τ
+
νex
τ

)
x

+ qkφ(e)z,

zt − zx = −kφ(e)z +

(
βzx
τ 2

)
x

.

(4.4)

By rescaling and using Galilean invariance, we may assume that s = 1 and τ+ = 1. Then
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Figure 4.3: The path of the smallest pair of eigenvalues in the right half-plane, as activation
energy EA increases from 2.8 to 6.8. The eigenvalues enter the right half-plane at about
=(λ) = 0.063i, and then eventually return and restabilize with increasing activation energy.

the traveling wave profiles satisfy

τ ′ = −u′,

−u′ + p′ = µ

(
u′

τ

)′
,

−(e+ u2/2)′ + (pu)′ =

(
µuu′

τ
+
νe′

τ

)′
+ qkφ(e)z,

−z′ = −kφ(e)z +

(
βz′

τ 2

)′
.

(4.5)

We can also assume that u+ = 0. We then proceed by integrating from x to +∞, obtaining

τ ′ = − 1

µ
[τ(τ − 1) + Γ(e− e+τ)] ,

e′ = −τ
ν

[
−1

2
(τ − 1)2 + (e− e+) + Γe+(τ − 1) + q(y + z − 1)

]
,

y′ = kφ(e)z − β−1yτ 2,

z′ = β−1yτ 2,

(4.6)
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where we have used τ = 1−u and introduced the flux variable y = βz′

τ2
. These equations can

be solved numerically to produce the wave profiles graphed in Figure 4.2.

4.2 The reactive Navier-Stokes equations in multiple dimen-

sions

The one dimensional scalar equations consider instabilities in the direction of the motion

of the wave. Spectral analysis in multiple dimensions must also consider instabilities in

directions transverse to the direction of motion. We begin by introducing the general di-

mension d reactive Navier-Stokes (RNS) equations, then reduce to two dimensions to work

in a concrete setting. Since Lagrangian coordinates involves adding variables to the multidi-

mensional RNS equations, with a concomitant array of unnecessary pure imaginary essential

spectra, our computations will use the Eulerian coordinates and notation used in [27]; see

Table 4.1.

Our spatial directions will be given by (y1, . . . , yd). For a reacting fluid with a one-step

exothermic reaction in d dimensions, the RNS equations are given in Eulerian coordinates

as

ρt + div(ρu) = 0, (4.7a)

(ρuj)t + div(ρuju) + pyj = δ∆uj + ω div
(
uyj
)
, j = 1, . . . d, (4.7b)

(ρẼ)t + div
[
(ρẼ + p)u

]
=∆
(
κT + δ

|u|2

2

)
+ δ div

(
(∇u)u

)
+ (ω − δ) div((div u)u) + div (qρβ∇z) ,

(4.7c)

(ρz)t + div(ρzu) = div (ρβ∇z)− kρzϕ(T ). (4.7d)

This system has dimension (d+3)× (d+3) and dependent variables (ρ,u, T, z). In (4.7c)

∇u refers to the Jacobian matrix of the velocity vector with respect to the spatial variables.
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ρ density
p pressure
u = (u1, . . . , ud)

tr fluid velocity
T temperature
ẽ specific internal energy
z mass fraction of reactant
ω, δ viscosity coefficients
κ heat conductivity
β species diffusion
k reaction rate
q heat release

.

Table 4.1: RNS variables and parameters

Our variables and parameters are labelled in Table 4.1. We write

Ẽ = ẽ+
|u|2

2
, ẽ = e+ qz.

Letting the pressure p and energy e be given by the ideal gas law,

p = p0(ρ, T ) = RρT, e = e0(T ) = cvT,

the reactive Navier-Stokes equations in two spatial dimensions can be written as

ρt + (ρu)x1 + (ρv)x2 = 0, (4.8a)

(ρu)t + (ρu2 + p)x1 + (ρuv)x2 = (2µ+ η)ux1x1 + µux2x2 + (µ+ η)vx1x2 , (4.8b)

(ρv)t + (ρuv)x1 + (ρv2 + p)x2 = µvx1x1 + (2µ+ η)vx2x2 + (µ+ η)ux2x1 , (4.8c)

(ρẼ)t + (ρuẼ + up)x1 + (ρvẼ + vp)x2

= (κTx1 + (2µ+ η)uux1 + µv(vx1 + ux2) + ηuvx2)x1

+ (κTx2 + (2µ+ η)vvx2 + µu(vx1 + ux2) + ηvux1)x2

+ (qρβzx1)x1 + (qρβzx2)x2 ,

(4.8d)
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(ρz)t + (ρuz)x1 + (ρvz)x2 = (ρβzx1)x1 + (ρβzx2)x2 − kρzϕ(T ), (4.8e)

where u = (u, v), and δ = µ, ω = µ + η. We then subtract the reaction equation from the

energy equation to obtain

ρt + (ρu)x1 + (ρv)x2 = 0, (4.9a)

(ρu)t + (ρu2 + p)x1 + (ρuv)x2 = (2µ+ η)ux1x1 + µux2x2 + (µ+ η)vx1x2 , (4.9b)

(ρv)t + (ρuv)x1 + (ρv2 + p)x2 = µvx1x1 + (2µ+ η)vx2x2 + (µ+ η)ux2x1 , (4.9c)

(ρE)t + (ρuE + up)x1 + (ρvE + vp)x2

= (κTx1 + (2µ+ η)uux1 + µv(vx1 + ux2) + ηuvx2)x1

+ (κTx2 + (2µ+ η)vvx2 + µu(vx1 + ux2) + ηvux1)x2

+ qkρzϕ(T ),

(4.9d)

(ρz)t + (ρuz)x1 + (ρvz)x2 = (ρβzx1)x1 + (ρβzx2)x2 − kρzϕ(T ), (4.9e)

where E = Ẽ − qz = e+ u2/2 + v2/2.

This system of PDEs is invariant under the rescaling

(x1, x2, t; ρ, u, v, T, z)→
(
mx1,mx2, εm

2t; ερ,
u

εm
,
v

εm
,
T

ε2m2
, z
)
,

β → β

ε
, q → q

ε2m2
, k → k

εm2
, EA →

EA
ε2m2

.

(4.10)

We note that the pressure and energy laws p = RρT and e = cvT are preserved after

rescaling. Our ignition function will have Arrhenius form

ϕ(T ) =


exp(−EA/[cv(T − Tig)]) if T ≥ Tig,

0 otherwise,

where EA is the activation energy and Tig is the ignition temperature. We will also write the

ignition function as a function of e, with ϕ̌(e) = ϕ(T ).
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4.3 Wave profiles

We now proceed to look for a traveling wave solution

(ρ, u, v, e, z)(x1, x2, t) = (ρ̂, û, v̂, ê, ẑ)(x1 − st).

By Galilean invariance, we can consider standing profiles (s = 0), which satisfy

(ρu)′ = 0, (4.11a)

(ρu2)′ + p′ = (2µ+ η)u′′, (4.11b)

(ρuv)′ = µv′′, (4.11c)

(ρuE + up)′ = κe′′/cv + (2µ+ η)(uu′)′ + µ(vv′)′ + qkρzϕ̌(e), (4.11d)

(ρuz)′ = (ρβz′)′ − kρzϕ̌(e), (4.11e)

obtained by setting t and x2 derivatives in (4.9) equal to zero. Note that ρu is constant,

and let m := ρu. The third equation simplies to mv′ = µv′′, whose only bounded solutions

are constant v. By a possible coordinate change we may assume v = 0.

Let ε = 1/ρ−; then in the rescaled coordinates ρ− = u− = 1, ρu = 1, and (4.11) still

holds by invariance of (4.9). Thus we obtain the system

u′ + p′ = (2µ+ η)u′′, (4.12a)

E ′ + (up)′ = κe′′/cv + (2µ+ η)(uu′)′ + qkρzϕ̌(e), (4.12b)

z′ = (ρβz′)′ − kρzϕ̌(e). (4.12c)
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Substitute (4.12c) into (4.12b) to get

u′ + p′ = (2µ+ η)u′′,

E ′ + (up)′ = κe′′/cv + (2µ+ η)(uu′)′ + q(ρβz′)′ − qz′,

z′ = (ρβz′)′ − kρzϕ̌(e).

Integrating from −∞ to x yields

(u− u−) + (p− p−) = (2µ+ η)u′, (4.14a)

(E − E−) + (up− u−p−) = κe′/cv + (2µ+ η)uu′ + qρβz′ − q(z − z−), (4.14b)

z′ = (ρβz′)′ − kρzϕ̌(e). (4.14c)

Setting ν = κ/cv and using E = e + u2/2, we can substitute the first equation into the

second to obtain

u′ = (2µ+ η)−1((u− u−) + (p− p−)),

(e− e−)− (u− u−)2/2 + p−(u− u−) = νe′ + qρβz′ − q(z − z−),

z′ = (ρβz′)′ − kρzϕ̌(e).

Since u− = ρ− = z− = 1, after applying the pressure law p = Γρe the system becomes

u′ = (2µ+ η)−1
(

(u− 1) + Γ(ρe− e−)
)
,

e′ = ν−1
(

(e− e−)− (u− 1)2/2 + Γe−(u− 1)− qρβz′ + q(z − 1)
)
,

z′ = (ρβz′)′ − kρzϕ̌(e).
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By setting y = −ρβz′ and using ρ = 1/u, we obtain the first order system

u′ = (2µ+ η)−1
(

(u− 1) + Γ(u−1e− e−)
)
, (4.17a)

e′ = ν−1
(

(e− e−)− (u− 1)2/2 + Γe−(u− 1) + q(y + z − 1)
)
, (4.17b)

y′ = β−1uy − ku−1zϕ̌(e), (4.17c)

z′ = −β−1uy. (4.17d)

4.4 Rankine-Hugoniot conditions

The Rankine-Hugoniot conditions differ slightly from those found in the dimension one case

because our multidimensional wave has been oriented toward the left. We note that when

q = 0 the profile equations (4.17) reduce to the Navier-Stokes profile equations, with e− < e+;

see [17]. This corresponds to end states z− = 1, z+ = 0, and a leftward moving traveling wave.

This reorientation of the wave has been done to better match up the construction of the Evans

function for the multidimensional RNS case with the work done on the multidimensional

nonreactive Navier-Stokes equations in [17]. Taking the limit of (4.17) as x → +∞, we

obtain equations

(u+ − 1) + Γ(u−1
+ e+ − e−) = 0, (4.18a)

(e+ − e−)− (u+ − 1)2/2 + Γe−(u+ − 1) + q(y+ + z+ − 1) = 0, (4.18b)

β−1u+y+ − ku−1
+ z+ϕ̌(e+) = 0, (4.18c)

− u+y+ = 0. (4.18d)

Since y+ = −βz′+/u+ = 0 = z+, equations (4.18c) and (4.18d) are trivially satisfied.

Solving (4.18a) for e+ and substituting into (4.18b) allows us to parametrize e+ and u+
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as functions of e−,Γ, and q, where

e+ = u+e− + Γ−1u+(1− u+), (4.19a)

u+ =
(Γ + 1)(Γe− + 1)−

√
(Γ + 1)2(Γe− + 1)2 − Γ(Γ + 2)(1 + 2e−(Γ + 1) + 2q)

Γ + 2
. (4.19b)

The negative square root above is the parameter regime for strong detonations.

4.5 Computation of the traveling wave

We numerically compute the wave profiles on the interval [0, 1]. The detonation can be

rescaled from [−L,L] to [0, 1] by first flipping the left half of the wave to [0, L] on the

positive x-axis, and then rescaling to the interval [0, 1]. If we rewrite (4.17) as

Y ′ = f(Y ),

then the system we solve on [0, 1] is

Z ′ =

Y1

Y2

 = L

 f(Y1)

−f(Y2)

 = F (Z),

with an 8× 8 analytic Jacobian

DF (Z) = L

Df(Y 1) 0

0 −Df(Y2)
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where

Df =



(2µ+ η)−1(1− Γu−2e) (2µ+ η)−1Γu−1 0 0

ν−1(1− u+ Γe−) ν−1 ν−1q ν−1q

β−1y + ku−2zϕ̌(e) −ku−1zϕ̌′(e) β−1u −ku−1ϕ̌(e)

−β−1y 0 −β−1u 0


. (4.20)

To use this numerical device, we impose the matching conditions Y1(0) = Y2(0). Because of

the translational invariance of the wave, we impose an additional phase condition specifying

the value of a coordinate of the solution at x = 0, for example, Y11(0) = c.

Projective conditions must be satisfied at ±∞, which will depend on the end states of

the profiles. Specifically, z− = 1 and z+ = 0 are the end states for the mass fraction of the

reactant, u− = 1 from the rescaling, e+ and u+ are determined by e−,Γ, and q using the

Rankine-Hugoniot conditions, and y± = 0 because z has constant end states and u± 6= 0.

Substituting (u±, e±, y±, z±) into the Jacobian (4.20), we numerically solve for two growth

and two decay modes at x = +∞ and three growth and one center mode at x = −∞.

Requiring the detonation to approach its end states orthogonal to the center mode at x =

−∞ and to the growth modes at x = +∞ leads to three projective conditions at x = ±∞.

Let Πg and Πc be matrices whose columns are bases for the growth eigenspace at x = +∞

and the centered eigenspace at x = −∞. Numerically the boundary conditions for the

detonation profiles are

Π∗g(Y1(1)− (u+, e+, y+, z+)T ) = 0, (4.21)

Π∗c(Y2(1)− (u−, e−, y−, z−)T ) = 0, (4.22)

Y1(0)− Y2(0) = 0, (4.23)

Y11(0) = c. (4.24)

The system parameters for the profile are Γ, (2µ + η), ν, k, q, β, EA, and e−. We note
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Figure 4.4: A leftward moving traveling wave solution (strong detonation) of the reactive
Navier Stokes equations in Eulerian coordinates, with activation energy EA = 2.7 and (2µ+
η) = 0.1. This is the same profile computed in [3], although computed in Eulerian coordinates
and oriented toward the left.

that Evans function computation requires both viscous parameters µ and η, rather than the

single parameter (2µ+ η) required for the wave profile.

4.6 The linearized eigenvalue equations

To be more concise, let

µ̃ = (2µ+ η), η̃ = (µ+ η), p̂ = Γρ̂ê, γ = Γ + 1.

The linearized eigenvalue problem comes from linearizing (4.9) about the traveling wave

and taking the Fourier transform in the x2 direction, resulting in

λρ+ (ρ̂u+ ûρ)′ + iξρ̂v = 0, (4.25a)

λ(ρ̂u+ ûρ) + (2u+ û2ρ+ Γ(êρ+ ρ̂e))′ = µ̃u′′ − ξ2µu+ iξ(η̃v′ − v), (4.25b)
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λρ̂v + v′ + iξΓ(êρ+ ρ̂e) = µv′′ − ξ2µ̃v + iξη̃u′, (4.25c)

λ

(
ρ̂e+ u+ ρ(ê+

û2

2
)

)
+ iξv (γρ̂ê+ û/2) +[

γ(êûρ+ e+ êρ̂u) +
1

2
ρû3 +

3

2
ûu

]′
=

(νe′ + µ̃(û′u+ ûu′) + iξηûv)
′ − ξ2νe

+ µ(iξûv′ − ξ2ûu) + iξηûx1v + qk (ρ̂ẑϕ̌′(ê)e+ ρ̂ϕ̌(ê)z + ẑϕ̌(ê)ρ)

(4.25d)

λ(ẑρ+ ρ̂z) + (ûẑρ+ ρ̂ẑu+ z)′ + iξρ̂ẑv =

β
(
(ρ̂z′ + ẑ′ρ)′ − ξ2ρ̂z

)
− k (ρ̂ẑϕ̌′(ê)e+ ρ̂ϕ̌(ê)z + ẑϕ̌(ê)ρ)

(4.25e)

We rewrite the system in flux coordinates, building off the work done in [17]. Defining

flux variables

w1 := −ρ̂u− ûρ, (4.26a)

w2 := µ̃u′ − (2u+ û2ρ)− Γ(êρ+ ρ̂e) + iξη̃v, (4.26b)

w3 := µv′ − v + iξη̃u, (4.26c)

w4 := µ̃(ûx1u+ ûu′) + νe′ − γ(e+ ûêρ+ êρ̂u)−
(

3

2
ûu+

1

2
û3ρ

)
+ iξη̃ûv, (4.26d)

w5 := β(ρ̂z′ + ẑx1ρ)− (ûẑρ+ ρ̂ẑu+ z), (4.26e)

we then adjust with

w̃2 := w2 − ûw1 = µ̃u′ − u− Γ(êρ+ ρ̂e) + iξη̃v, (4.27a)

w̃4 := w4 − ûw̃2 − Êw1 = νe′ + µ̃ûx1u− e− p̂u. (4.27b)

In this coordinate system the eigenvalue equations become

w′1 = −λρ̂w1 − λρ̂2u+ iξρ̂v, (4.28a)
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w̃′2 = −ûx1w1 + (λρ̂+ µξ2)u, (4.28b)

w′3 = −iξp̂w1 − iξp̂ρ̂u+ (λρ̂+ ξ2µ̃)v + iξΓρ̂e, (4.28c)

w̃′4 = (−êx1 + ẑf2)w1 − ûx1w̃2 + iξf1(û, ûx1)v

+ f4e+ ρ̂ẑf2u− f2z,

(4.28d)

w′5 = iξρ̂ẑv − ρ̂ẑf3w1 − ρ̂2ẑf3u+ ρ̂(βξ2 + f3)z + kρ̂ẑϕ̌′(ê)e, (4.28e)

µ̃u′ = −p̂w1 + w̃2 + (1− p̂ρ̂)u− iξη̃v + Γρ̂e, (4.28f)

µv′ = w3 − iξη̃u+ v, (4.28g)

νe′ = w̃4 + (p̂− µ̃ûx1)u+ e, (4.28h)

βz′ = ûw5 + ûz + βρ̂ẑx1u+ (βẑx1 − ûẑ)w1, (4.28i)

where

f1 = p̂+ (µ− η)ûx1 ,

f2 = qkρ̂ϕ̌(ê),

f3 = λ+ kϕ̌(ê),

f4 = λρ̂+ νξ2 − qkρ̂ẑϕ̌′(ê).

4.6.1 The Evans system. The linearized eigenvalue problem may be written in the

form W ′ = A(x;λ, ξ)W where W = [w1, w̃2, w3, w̃4, w5, u, v, e, z]T and the matrix A is given
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by



−λρ̂ 0 0 0 0 −λρ̂2 iξρ̂ 0 0

−ûx1 0 0 0 0 λρ̂+ µξ2 0 0 0

−iξp̂ 0 0 0 0 −iξp̂ρ̂ λρ̂+ µ̃ξ2 iξΓρ̂ 0

−êx1 + ẑf2 −ûx1 0 0 0 ρ̂ẑf2 iξf1 f4 −f2

−ρ̂ẑf3 0 0 0 0 −ρ̂2ẑf3 iξρ̂ẑ kρ̂ẑϕ̌′(ê) ρ̂(βξ2 + f3)

−µ̃−1p̂ µ̃−1 0 0 0 µ̃−1(1− p̂ρ̂) −iµ̃−1ξη̃ µ̃−1Γρ̂ 0

0 0 µ−1 0 0 −iµ−1ξη̃ µ−1 0 0

0 0 0 ν−1 0 (p̂− µ̃ûx1)/ν 0 ν−1 0

ẑx1 − ûẑ/β 0 0 0 β−1û ρ̂ẑx1 0 0 β−1û



.

(4.29)

4.7 Numerical results

4.7.1 Evans function formulation. The dimension nine Evans matrix (4.29) provides

a first order formulation of the linearized eigenvalue problem (4.28). Unstable detonations

in the multidimensional RNS equations correspond to values {ξ, λ | ξ ≥ 0,<(λ) ≥ 0} for

which there are nontrivial solutions W of

W ′ = A(x;λ, ξ)W. (4.30)

Intuitively, λ describes instabilities occurring in the longitudinal direction, and ξ describes

instabilities in the transverse direction.

A nontrivial solution W must grow along the four dimensional unstable eigenspace of

A(λ, ξ) near x = −∞, and decay along the five dimensional stable eigenspace of A+(λ, ξ)

near x = +∞. Let W−(x;λ, ξ) be an analytic basis in λ for the growth manifold of (4.30),

and W+(x;λ, ξ) an analytic basis for the decay manifold. The separation between the growth
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Figure 4.5: In (a) we show the Evans function output for EA = 2.7 on a semicircular contour
of radius R = 0.1. The inset in (a) is magnified in (b), where it is easy to see that the
winding number changes between EA = 2.7 and EA = 2.8 as a Hopf bifurcation occurs.

manifold and the decay manifold at x = 0 is captured by the Evans function

D(λ, ξ) = det [W−(x;λ, ξ);W+(x;λ, ξ)]x=0 .

To compute analytic bases W±(x;λ, ξ), we begin by initializing with analytic bases at infinity

using the method of Kato. W± are then evolved from x = ±∞ to 0 using the method of

Drury. The methods of Dury and Kato are described in detail by Sections 2.3 and 2.2

and the references contained therein. Our calculations use an alternative formulation of the

Evans function near x = +∞, which allows us to evolve a four dimensional adjoint subspace

W̃+(x;λ, ξ) from +∞ to 0 instead of the standard five dimensional decay manifold W+. The

alternative Evans function is given by

det
[
W̃ ∗

+(x;λ, ξ)W−(x;λ, ξ)
]
x=0

;

see Section 1.3.1 for further details on the adjoint formulation.

4.7.2 Parameter values. Our numerical computations have set µ = η = 1/30, β = 0.1,

Tig = 0.06641, and cv = 1. To better compare our results with those in [3], we have chosen
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k as a function of activation energy EA. This choice of k regulates the scale length of the

reaction, thereby simplifying the solution of the detonation profiles. After setting Γ = 0.2,

q = 0.623, and e− = 0.0623, parameters e+ = 0.9706, u+ = 0.2569 are determined by the

Rankine-Hugoniot condition.

Detonations are known to experience a cascade of Hopf-like bifurcations at higher values

of =(λ) as activation energy increases. Our experiments have focused on the smallest pair

of eigenvalues as they enter the right half-plane, and eventually return and restabilize. Our

parameters of interest are activation energy EA and heat conductivity ν. The first experiment

describes these instabilities as EA varies between 1.6 and 7.1 with ν fixed. The second

experiment fixes EA and allows ν to vary. This helps us observe the nature of the unstable

manifold of eigenvalues present in the multidimensional RNS system. These results should

be compared to those found in [3].

4.7.3 Fixed heat conductivity with varying activation energy. For ν = 0.1 we

allowed EA to vary from 1.6 to 7.1 and tracked the first pair of eigenvalues seen crossing

into the right half-plane. Since ξ = 0 corresponds to the standard 1D RNS Evans function,

we were able to verify our results by comparing with those found in [3]. In both systems

(ξ = 0) instability occurs around EA = 2.7 and the system restabilizes around EA = 7.1.

Those eigenvalues also restabilize as ξ increases. Because instabilities in planar detonations

correspond to a location λ in the right half-plane and a Fourier frequency ξ, varying activation

energy EA defines a manifold of instabilities (<(λ),=(λ), ξ); see Figure 4.6.

Perhaps a more interesting way to view the unstable eigenvalue pair is to consider it as

an object in the three dimensional space of triples (EA, ν, ξ). Cross-sections of this object

along the ν axis allow us to view the neutral stability boundary in (EA, ξ)-space. Higher

values of heat conductivity correspond to a faster return to stability as activation energy EA

increases; see Figure 4.7.
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Figure 4.6: We plot a portion of the unstable eigenvalues of strong detonations in the
multidimensional RNS equations with EA ∈ [1.6, 6.6]. The location of the unstable eigenvalue
λ with negative imaginary part is recorded together with its Fourier frequency ξ in the
transverse direction. For fixed ξ, as EA increases the unstable eigenvalue turns around and
heads back to the left half-plane.

4.7.4 Fixed activation energy with varying heat conductivity. These experiments

have focused on the effect of increasing heat conductivity on the smallest pair of unstable

eigenvalues, for several fixed values of activation energy. In general, as heat conductivity

increases the unstable pair of eigenvalues returns to the left half-plane and restabilize. This

effect is illustrated in Figures 4.9 and 4.10 by plotting the Evans function output on a semi-

circular contour with radius 0.4 in the right half-plane. As the heat conductivity increases

from ν = 0.1 to 0.8, the Evans contours can be seen to unwind from the origin, indicating

that the eigenvalue pair has restabilized.

Figure 4.11 graphs the neutral stability boundary in (ν, ξ) space for EA = 2, 3, and 4.

The boundary demonstrates a return to stability as ν increases—with a quicker return to

stability for the larger values of EA.
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(a) (b)

(c)

Figure 4.7: Neutral stability boundary in (EA, ξ) space for ν = 0.1, 0.3, and 0.5. For higher
values of heat conductivity, we see a faster return to stability as activation energy ν increases.
We restricted our analysis to EA ∈ [1.6, 5.8].
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Figure 4.8: Unstable eigenvalues as heat conductivity ν varies. Each line is parameterized by
Fourier frequency ξ. Eigenvalues return to the left half-plane and restabilize as ν increases.

(a) (b)

Figure 4.9: Evans function output for several Fourier frequencies ξ ∈ [0, 0.8] on a semicircular
contour with radius 0.4. (a): ν = 1/10. (b): ν = 1/5.
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(a) (b)

(c)

Figure 4.10: Evans function output for several Fourier frequencies ξ ∈ [0, 0.8] on a semicir-
cular contour with radius 0.4. (a): ν = 2/5. (b): ν = 4/5. (c): ν = 8/5.
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(a) (b)

(c)

Figure 4.11: Neutral stability boundary in (ν, ξ) space for EA = 2, 3, and 4. For higher values
of activation energy, we see a quicker return to stability as heat conductivity ν increases.
We restricted our analysis to values of ν ≥ 0.1.
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Chapter 5. A Python implementation of

STABLAB

Numerical Evans function computation has become a mature technology; see [20, 4, 6].

Our numerical computations rely on STABLAB, a MATLAB-based library developed by

Humpherys et al. STABLAB provides core functionality for computing wave profiles, initial-

izing analytic bases, and calculating the Evans function. It is able to set up batch processes,

and has some capabilities for multi-core and distributed computing in MATLAB. STABLAB

has recently been ported to Python, with its open source scientific computing environment

and parallel processing libraries. Our work with detonations in the reactive Navier-Stokes

equations used Python’s parallel processing tools to locate the instabilities graphed in Figure

4.6. The computations used half a day and several hundred processors on Mary Lou, BYU’s

supercomputer.

5.1 STABLAB: Stability Laboratory for Evans function com-

putation

MATLAB provides several robust functions for solving initial and boundary value problems

that are used extensively in STABLAB. The IVP solvers are used to integrate the growth

and decay manifolds of the Evans system from x = ±∞ to x = 0. MATLAB function ode45

uses a Dormand-Prince Runge-Kutta algorithm. This algorithm constructs fourth and fifth

order solutions which allow the routine to adaptively control the step size to bound the

numerical error. The variable-order solver ode15s can be used to solve stiff IVPs.

STABLAB also relies heavily on robust BVP solvers to compute traveling wave profiles.

Collocation and shooting are common approaches to solving BVPs. Good MATLAB solvers

include bvp4c and bvp5c, which use 4th and 5th order collocation. We use the non-native

MATLAB function bvp6c, which extends bvp4c with a 6th order Lobatto collocation method;

see [12].
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Today’s Evans function studies are often highly demanding, involving systems with a

large number of relevant physical parameters. The most intense computations are ODE

integration routines, which evolve manifolds from x = ±∞ to x = 0. These computations

are embarrassingly parallel and are an easy source of potential speed gains. As more physical,

multi-D systems are encountered with larger parameter spaces, parallel processing tools will

make complicated Evans function computations feasible. Unfortunately, MATLAB’s Parallel

Computing Toolbox limits users to 12 cores on a single machine.

5.2 Migration to Python

The core STABLAB routines have recently been implemented in Python’s scientific com-

puting environment. Python is an object-oriented interpreted language that is ideal for

prototyping complex mathematical systems. Python is open source, has a large community

of users and developers in scientific computing, and has many resources for multi-threaded

and distributed computing.

Our computing stack includes Python 2.7, its standard library, and other third party

libraries that include NumPy, SciPy, Matplotlib, and MPI4PY. NumPy and SciPy are pop-

ular software packages used in science, engineering, and mathematics. These libraries consist

of a Python object-oriented interface to precompiled C and Fortran code such as BLAS and

LAPACK, and support fast, vectorized arithmetic operations and a wide assortment of func-

tions. Since NumPy and SciPy rely internally on BLAS and LAPACK, scientific computing

in Python is about as fast as MATLAB, which is an interpreted language that also relies on

BLAS and LAPACK internally.

Matplotlib is a package that can be used to create quality 2D plots; see [22]. It is a

standard in Python’s scientific computing community. Matplotlib can be easily adopted by

MATLAB users due to the similarity of its syntax.

Several ODE solvers are available in Python. The standard adaptive fifth order Dormand-

Prince Runge-Kutta procedure for IVPs is implemented as an option for the complex_ode
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function in scipy.integrate. One BVP solver is bvp_solver, which is implemented as a

SciKit. The non-native MATLAB solver bvp6c, built by Nick Hale and implementing sixth

order collocation, has been also been repurposed for use in Python.

STABLAB is available in a GitHub repository in both Python and MATLAB; see [4].

The Python implementation contains scripts that compute the Evans function for traveling

waves for Burgers equation, the gKdV equation, the Boussinesq equation, and combustion

with a high Lewis number.

5.3 Solitons in the gKdV system

In this section we construct the Evans function for soliton solutions of the gKdV equation,

and use numerical continuation to track the unstable eigenvalue-eigenfunction pair. We also

provide Python code that computes the Evans function.

The gKdV equation is given by

ut + uxxx +
1

p
(up)x = 0, p ≥ 2, (5.1)

with solitary wave solutions of the form

û(x− st) =
p(p+ 1)

2
sech2

(
1− p

2
(x− st)

)1/(p−1)

;

see Section 3.2. Transforming (5.1) into its moving frame (x, t)→ (x− st, t) and linearizing

about the steady state solution û results in the eigenvalue problem

λv − sv′ + v′′′ + (ûp−1v)′ = 0.

By a possible rescaling, we may assume that s = 1. Substituting w =
∫ x
−∞ v and integrating

74



www.manaraa.com

from −∞ to x yields the eigenvalue problem in integrated coordinates,

λw − w′ + w′′′ + ûp−1w′ = 0.

The eigenvalue problem can be written as a first-order system W ′ = A(x;λ, p)W, with

A(x;λ, p) =


0 1 0

0 0 1

−λ 1− ûp−1 0

 and W =


w

w′

w′′

 . (5.2)

For an unstable eigenvalue λ, our root following approach requires an initial estimate of the

corresponding eigenfunction W (x); see Section 3.2.2. Since the scaling invariance of W (x)

necessitates a phase condition at x = 0, we reformulate (5.2) on the domain x ∈ [0,∞).

Letting Y (x) = W (−x), we obtain


W

Y

λ


′

=


A(x;λ, µ) 0 0

0 −A(−x;λ, µ) 0

0 0 0



W

Y

λ

 , x ∈ [0,∞). (5.3)

The phase condition can be imposed at x = 0 by fixing a coordinate of W. The boundary

conditions consist of 3 matching conditions, 3 projective conditions at x =∞, and the phase

condition. Letting P+(λ, µ) be the projection onto the unstable manifold of A+(λ, µ) and

P−(λ, µ) the projection onto the stable manifold of A−(λ, µ), the boundary conditions are

implemented on a truncated interval [0, L] by



W (0)− Y (0)

P+(λ, µ)W (L)

P−(λ, µ)Y (L)

W1(0)−W ∗
1


=



0

0

0

0


(5.4)
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where L > 0 is large enough to capture the asymptotic behavior of the eigenfunction. Numer-

ical continuation is then used to track the eigenvalue-eigenfunction pair as p varies. Python

functions implementing (5.2), (5.4), and the right hand side of (5.3) are contained in the file

gKdV.py, shown in Listing 5.1.

5.4 Evans computation and roottracking in the gKdV system

5.4.1 gKdV driver file. Our Python code for the gKdV system is contained in two files,

gKdV.py and gKdVdriver.py. The driver file contains most of the control code for the gKdV

system, and imports the gKdV Evans matrix, the eigenfunction ODE, and the associated

boundary conditions from gKdV.py. In this section we will provide a short description of the

code contained in gKdVdriver.py.

gKdVdriver.py begins with a series of Python import statements. Basic mathematical and

plotting functions are imported from NumPy, SciPy, and Matplotlib. The core STABLAB

algorithms are implemented in four Python modules, contained in the files bin.py, contour.

py, manifold.py, and evans.py. Several of the functions in these modules are also imported

into gKdVdriver.py, along with the BVP solver bvp6c and roottracking.py.

from __future__ import division, print_function

import numpy as np

from numpy import array, ones, zeros, linspace, flipud, conj, dot

import matplotlib.pyplot as plt

from core.contour import winding_number

from core.evans import emcset, compute_Evans

from core.roottracking import eigf_init_guess, mod_drury

from core.pybvp6c.bvp6c import bvp6c, bvpinit, deval, struct

from gKdV import A, G, G_jacobian, bcs_G, bcs_G_jacobian

Next the gKdV system is initialized for Evans function computation with several STA-

BLAB variables, implemented as Python dictionaries. Variable p contains gKdV system
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parameters, and s is used to evaluate wave profiles for the system. Variables e, m, and c

are used by functions defined in evans.py, manifold.py, and contour.py, respectively, and are

initialized with the emcset function.

The call to emcset specifies the type of the traveling wave as a front or a pulse. It also

specifies the number of growth modes and decay modes in the Evans system at x = ±∞ as 2

and 1, respectively. Our computations will use the adjoint formulation for the Evans system

near x = −∞; this is a small simplification that reduces the dimension of the manifold that

must be evolved from x = −∞ (from k = 2 to k = 1).

p = {'p':10}

s = {'I':1,'R':5,'L':-5,'A':A}

s,e,m,c = emcset(s,'pulse',2,1,'adj_reg_polar')

Next we construct a contour in the right half-plane, over which we compute the Evans

function. To compute the Evans function, growth and decay manifolds must be evolved from

x±∞ to x = 0. Analytic bases for these manifolds are initialized at infinity with a numerical

method based on Kato’s reduced ODE; see Section 2.3 for details and references. c['ksteps']

specifies the number of Kato steps between points in the complex plane where the Evans

function is computed. This value can be increased as needed to ensure the initializing bases

vary smoothly.

The compute_Evans function requires the contour and several STABLAB variables as input.

Variable s is a Python dictionary that usually contains the numerical solution of the traveling

wave; however, since solitons in the gKdV system have an explicit formula, this formula is

provided in the implementation of the Evans matrix A. The compute_Evans function evaluates

the Evans function over the contour and the winding number is computed; see Figure 5.1.

c['ksteps'] = 1; points = 50

preimage = ( 5.5+5*np.exp(

2*np.pi*1j*np.linspace(0,1,points+(points-1)*c['ksteps'])) )

preimage2, w = compute_Evans(preimage,c,s,p,m,e)
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print('Evans Computation Successful\nThe winding number is',winding_number(w))

plt.plot(np.real(w),np.imag(w),'*-k',linewidth=2)

plt.show()

To implement roottracking for the gKdV system, we begin by resetting the STABLAB

variables. Note in particular the new call to the emcset function: our roottracking approach

requires a 'reg_reg_polar' formulation for the Evans function.

We set the system parameter and the length of the numerical domain of the eigenfunction

to p = 5.2 and L = 20, respectively. A new STABLAB variable r is initialized for use in

roottracking.py. The function eigf_init_guess constructs an initial estimate for the eigen-

function W. Analytic bases for the growth and decay manifolds at x = ±∞ are evolved to

x = 0 using a small modification of Drury’s method; see equation 3.9. These analytic bases

are evolved for λ = 0.098035, an unstable eigenvalue of the gKdV system when p = 5.2. W

is then constructed using (3.6) and (3.7).

# Roottracking: find initial estimate of eigenfunction W

L = 20.

p, s = {'p':5.2,'p_final':10.}, {'I':L,'R':L,'L':-L,'A':A}

s, e, m, c = emcset(s,'pulse',2,1,'reg_reg_polar')

r={'N':200,'root':0.098035,'method':mod_drury,'options':{'RelTol':1e-8,'AbsTol':1e

-9}}

r, x1, x2 = eigf_init_guess(s,e,m,c,p,r)

for j in range(0,m['n']):

plt.plot(x1,np.flipud(r['W'][j+m['n']-1,:]) ,'k')

plt.plot(np.flipud(x2), r['W'][j,:],'k')

plt.title('Eigenfunction for gKdV equation')

plt.xlabel('x'); plt.ylabel('W')

plt.show()

Naive numerical continuation is used to follow the eigenvalue-eigenfunction pair from

p = 5.2 to p = 10. Options to bvp6c are set by defining attributes on the Python class

opt_G, and helper functions bvpinit and deval are used to create initial guesses for bvp6c and
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to evaluate its solutions. The variable r['ph'] will be used by the BVP solver to impose a

phase condition for the eigenfunction.

# Roottracking: numerically continue in (lambda, W) as p varies through p_array

N = int(round((p['p_final']-p['p'])/.05) + 1)

p_array = linspace(p['p'],p['p'] + .05*(N-1),N)

root_array = zeros(N); root_array[0] = r['root']

opt_G = struct()

opt_G.abstol, opt_G.reltol = 1e-9, 1e-8

opt_G.nmax, opt_G.stats = 2000, 'on'

s.update({ 'guess':r['W'], 'ph':[1,r['W'][1,0]] })

for j in range(0,N):

p['p'], s['I'] = p_array[j], 10-(10/4.8)*(p['p']-10)

s['R'], s['L'] = s['I'], -s['I']

opt_G.fjacobian = lambda x,y: G_jacobian(x,y,s,p)

opt_G.bcjacobian = lambda x,y: bcs_G_jacobian(x,y,s,p)

if j==0:

solinit = bvpinit(linspace(0,s['I'],len(s['guess'][1])),s['guess'])

else:

solinit = bvpinit(linspace(0,s['I'],250),yint)

s['sol_G'] = bvp6c(lambda x,y: G(x,y,s,p),

lambda ya,yb: bcs_G(ya,yb,s,p), solinit, opt_G)

yint,_ = deval(s['sol_G'],linspace(0,s['I'],250))

root_array[j] = yint[-1,0]

print('\n\nj = '+str(j)+':', '\nParameter p = ', p['p'])

print('lambda = ', root_array[j], '\nNumerical Infinity = ', s['I'])

plt.figure()

plt.plot(p_array,root_array,'-*k')

plt.show()

5.4.2 gKdV system functions.
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Figure 5.1: Evans function output for the gKdV system with p = 10 on a contour in the
right half plane. The winding number of 1 indicates an instability.

Lines 1-4

We import mathematical functions from NumPy and SciPy. The BVP solver bcp6c

requires Jacobian functions for the ODE and the boundary conditions as arguments.

This can be done using the Jacobian function from Numdifftools.

Lines 6-11

Here the Evans matrix A is defined. Note that STABLAB variables s and p are supplied

as arguments. System parameters are contained in p, and s usually stores the numerical

solution of the wave profile. However, since the gKdV system has an explicit formula

for its wave profile, that formula is hard-coded in lines 7-8. Also notice that λ is coded

as lmbda; in the Python language lambda is a keyword used to create or modify functions

in-line. This can be seen in the Jacobian functions defined later in this file.

Lines 13-56

The ODE function (5.3) and its derivative are implemented as Python functions G
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(a) (b)

Figure 5.2: Subplots (a) and (b) graph the eigenfunctions W corresponding to the unstable
eigenvalue λ for p = 5.2 and p = 10, respectively. The eigenvalue-eigenfunction pair satisfies
(3.4) and (3.5).

and G_jacobian. The boundary conditions (5.4) and their derivative functions are

implemented as bcs_G and bcs_G_jacobian. We also define the function Flinear, which

is used to evaluate the Evans matrix at x = ±∞. The results of Flinear are used to

provide projective conditions for the eigenfunction.

1 from scipy import linalg; orth = linalg.orth

2 from numdifftools import Jacobian

3 from numpy import array, ones, zeros, linspace, flipud, conj, dot, cosh, copy

4 from core.bin import projection2, projection1

5

6 def A(x,lmbda,s,p):

7 u=(.5*p['p']*(p['p']+1))**(1./(p['p']-1))*(

8 cosh(.5*(1-p['p'])*x) )**(-2./(p['p']-1))

9 return array([ [0, 1., 0 ],

10 [0, 0, 1.],

11 [-lmbda, 1-u**(p['p']-1), 0 ] ])

12

13 def G(x,y,s,p):

14 n = 3

15 yr = copy(y[:n+1]); yr[-1] = y[-1]
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Figure 5.3: Unstable eigenvalues for the gKdV system for 5.2 ≤ p ≤ 10. These eigenvalues
are tracked using the root following method discussed in Chapter 3.2; see [19].

16 yl = copy(y[n:])

17

18 out = zeros(2*n+1)

19 out[:n] = (s['R']/s['I'])*dot(A(s['R']/s['I']*x,yr[-1],s,p), yr[:-1])

20 out[n:2*n] = (s['L']/s['I'])*dot(A(s['L']/s['I']*x,yl[-1],s,p), yl[:-1])

21 return out

22

23 def G_jacobian(x,y,s,p):

24 try:

25 g = Jacobian(lambda z:G(x,z,s,p),step = 1e-7)

26 except:

27 g = Jacobian(lambda z:G(x,z,s,p),step = 1e-8)

28 return g(y)

29

30 def bcs_G(Ya,Yb,s,p):

31 n = 3

32 aa = array([0, 0, 0, (Ya[-1] + Yb[-1])/2. ])
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33 AM = Flinear(aa); AP = AM

34 P, _ = projection2(AM,-1,1e-8); LM = orth(P)

35 P, _ = projection2(AP,1,1e-8); LP = orth(P)

36

37 out = zeros((2*n+1,),dtype='complex')

38 out[:3] = Ya[0:n]-Ya[n:2*n] # matching conditions = 3

39 out[3] = Ya[s['ph'][0]] - s['ph'][1] # phase condition = 1

40 out[4] = LM.T.dot(Yb[n:2*n])[0] # at -infty; = 1

41 out[5:] = LP.T.dot(Yb[0:n]) # at +infty; = 2

42 return out

43

44 def bcs_G_jacobian(ya,yb,s,p):

45 try:

46 ga = Jacobian(lambda z:bcs_G(z,yb,s,p),step=1e-6)

47 gb = Jacobian(lambda z:bcs_G(ya,z,s,p),step=1e-6)

48 except:

49 ga = Jacobian(lambda z:bcs_G(z,yb,s,p),step=1e-8)

50 gb = Jacobian(lambda z:bcs_G(ya,z,s,p),step=1e-8)

51 return ga(ya), gb(yb)

52

53 def Flinear(y):

54 return array([ [0, 1, 0],

55 [0, 0, 1],

56 [-y[-1], 1, 0] ])

Listing 5.1: gKdV.py

5.5 Detonation profiles and Evans computation in the RNS

system

5.5.1 RNS driver file. We include here our Python code for numerically resolving det-

onation profiles and computing the associated Evans function. The code is contained in
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two files, RNSdriver.py and RNS.py, and can be obtained at [4]. Most of the control code is

contained in RNSdriver.py, which sets up the RNS system, calls BVP solving routines from

RNS.py, and computes the Evans function over a semicircular contour in the right half-plane.

The driver file begins with a series of Python statements importing STABLAB routines

and other third-party libraries. The core STABLAB algorithms are implemented in four

Python modules, contained in the files bin.py, contour.py, manifold.py, and evans.py. We

import pybvp6c, a Python implementation of a BVP solver using a 6th order collocation

method, bvp6c. We also import MPI from MPI4Py to support parallel Evans function com-

putation. Basic mathematical and plotting functions are imported from NumPy, SciPy, and

Matplotlib.

from __future__ import division, print_function

import sys

sys.path.append('/fslhome/joshualy/research2016/pystablabDec2016/')

import numpy as np

from numpy import linspace, array, zeros, ones, conj, real, imag, sqrt

from scipy.io import loadmat

import matplotlib.pyplot as plt

import pickle

from mpi4py import MPI

from core.bin import projection2, projection1

from core.contour import winding_number, semicirc2, analytic_basis

from core.evans import compute_Evans, emcset

from core.pybvp6c.bvp6c import bvp6c, bvpinit, deval

from core.pybvp6c.structure_variable import *

from RNS import detonation_profile_solver, A

def plot_profile(s,p):

xint = linspace(0,s['I'],200)**2.

Sxint,_ = deval(s['sol'],xint)

l, c = ['$u$','$e$','$y$','$z$'], ['b','g','c','r']
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for j in range(4):

plt.plot(s['R']*xint,Sxint[j,:],c[j],linewidth=2,label=l[j])

plt.plot(s['L']*xint,Sxint[4+j,:],c[j],linewidth=2)

plt.legend(loc='best',fontsize=18)

plt.axis([s['L'],s['R'],-.05,1.05])

We import a file of paired values (EA, k). The reaction rate k is computed to make the length

of the reaction interval approximately equal for inviscid detonations in the ZND system as

EA increases; see [3]. The Rankine-Hugoniot conditions (4.19) can be computed using the

produce_endstates function.

k_EA=np.genfromtxt('data',skip_header=0,skip_footer=0,delimiter=',',dtype='float32'

)

# k_EA contains values of EA,k for EA = 1.6:0.01:7.1

k_EA = k_EA[60:350:10,:] # values of EA,k for EA = 2.2:0.1:5.0

def produce_endstates(q,gamma,e_minus):

B=(gamma+1.)*(gamma*e_minus+1.)

u_plus=(B-sqrt(B**2.-gamma*(gamma+2)*(1+2.*e_minus*(gamma+1.)+2.*q) )

)/(gamma + 2.)

e_plus=u_plus*e_minus+u_plus*(1.-u_plus)/gamma

return e_plus,u_plus

The driver_continuation function accepts a list of paired EA and k values, and computes

detonation profiles for each pair using naive numerical continuation. The parameters and

numerical solutions are permanently stored using Python’s pickle library. This code can

easily be generalized to compute detonation profiles across other parameter regimes.

Next the RNS system is initialized for Evans function computation with several STA-

BLAB variables, implemented as Python dictionaries. Variable p contains RNS system

parameters, and s contains parameters needed to numerically compute wave profiles. All

RNS system parameters are initialized as described in Section 4.7.2. Variables e, m, and c

are used by functions defined in evans.py, manifold.py, and contour.py, respectively, and are
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initialized with the emcset function.

def driver_continuation(list_k_EA):

# Define STABLAB dictionaries s and p

epsilon = 0.1

p={'g':0.2, 'mu':epsilon/3., 'eta':epsilon/3., 'nu':epsilon, 'q':0.623,

'beta':0.1, 'Ti':0.06641216, #'EA':k_EA[0,0], 'k':k_EA[0,1],

'c':1., 'z_minus':1., 'z_plus':0., 'y_minus':0.,

'y_plus':0.,'u_minus':1., 'e_minus':0.0623, 'xi':0. }

p['e_plus'], p['u_plus'] = produce_endstates(p['q'], p['g'], p['e_minus'])

s={'I':1.,'side':1,'n':4,'rarray':array([0,1,2,3]),'larray':array([4,5,6,7]),

'R':8.,'L':-4.,'A':A}

# right and left end states

s['UR'] = array([p['u_plus'], p['e_plus'], 0., p['z_plus']])

s['UL'] = array([p['u_minus'], p['e_minus'], 0., p['z_minus']])

p['UR'], p['UL'] = s['UR'], s['UL']

# Computes and saves profile and STABLAB variables s,p for EA, k in list_k_EA

for EA, k in list_k_EA:

p['EA'], p['k'] = EA, k

sol, p = detonation_profile_solver(s,p)

s['sol'] = sol

print("EA = ", EA)

str_=('profile_nu_1/euler_plot_EA_%1.2f'%EA).replace('.','_')

File = open(str_,'wb')

pickle.dump([s,p],File); File.close()

The driver_Evans_xi function accepts the name of a pickled Python object, and extracts

the numerical solution in two STABLAB variables s and p. We construct a semicircular

contour in the right half-plane centered at the origin. A small notch is cut in the contour to

avoid the zero in the Evans function at the origin. The call to emcset specifies the type of the

traveling wave as a front or a pulse. It also specifies the number of growth modes and decay
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Figure 5.4: The upper half of a semicircular contour in the right half-plane. The lower half
can be ignored due to the symmetry D(λ) = D(λ).

modes in the Evans system at x = ±∞ to be 4 and 5, and specifies the adjoint formulation

for the Evans system near x = +∞; see (1.20).

Because the Evans function satisfies D(λ) = D(λ), the Evans function need only be

computed over contour points in the upper right quadrant of the complex plane; see Figure

5.4. The Evans function is then evaluated over the contour for a range of values ξ with the

compute_Evans function.

To compute the Evans function, growth and decay manifolds must be evolved from x±∞

to x = 0. Analytic bases for these manifolds are initialized at infinity with a numerical

method based on Kato’s reduced ODE; see [29] for details and references. c['ksteps'] speci-

fies the number of Kato steps between points in the complex plane where the Evans function

is computed. This value can be increased as needed to ensure that the initializing bases vary

smoothly in λ.

def driver_Evans_xi(filename,list_xi):

File_ = open(filename,'rb')
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s, p = pickle.load(File_)

File_.close()

preimage=semicirc2(circpnts=10,imagpnts=10,innerpnts=5,ksteps=c['ksteps'],

r=0.1,spread=2,inner_radius=5*10**(-3.),lambda_steps=c['lambda_steps'])

s['output'] = []

for xi in list_xi:

p['xi'] = xi

print("EA, xi = ", p['EA'],xi)

[s,e,m,c] = emcset(s,'front',4,5,'default')

preimage2, halfw = compute_Evans(preimage,c,s,p,m,e)

w = np.empty((2*len(halfw)),dtype='complex')

halfw = halfw/halfw[0]

w[:len(halfw)] = halfw

w[len(halfw):] = conj(np.flipud(halfw))

try: s['output'].append((xi,int(winding_number(w)),w))

except: pass

print("\n")

for xi,wnd,_ in s['output']:

print("EA, xi, wnd = ", p['EA'],xi,wnd)

File = open(filename,'wb')

pickle.dump([s,p],File); File.close()

The MPI4Py library allows us to easily parallelize Evans function computation. For

example, running mpirun -n 5 python RNSdriver.py on BYU’s supercomputer executes the

code below 5 times on separate processes, each having a value of RANK between 1 and 5.

# Parallelizes Evans function computation; since Evans function

# computation is embarrassingly parallel we can assign one call to

# driver_Evans_xi to its own process.

COMM = MPI.COMM_WORLD

RANK = COMM.Get_rank()
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# SIZE = COMM.Get_size()

# print("The number of processes is ",SIZE)

L = np.arange(SIZE)

try:

# Computes the Evans function over a semicircular contour for several values of

xi

# Uses pickle to save the output.

EA = k_EA[RANK,0]

filename=('profile_nu_1/euler_plot_EA_%1.2f'%EA).replace('.','_')

driver_Evans_xi(filename,list_xi=array([0.,0.2,0.4,0.6,0.8]))

print("EA = ", EA)

except:

print("Error in Evans function computation")

5.5.2 RNS profile solver.

Lines 1-10

Mathematical functions are imported from NumPy and SciPy. The BVP solver bcp6c

requires Jacobian functions for the ODE and the boundary conditions as arguments.

This can be done using the Jacobian function from Numdifftools.

Lines 11-86

Here the Evans matrix A is defined; see (4.29). Note that STABLAB variables s

and p are supplied as arguments. These variables contain system parameters and the

numerical solution of the wave profile, respectively.

Lines 88-134

The boundary condition function and its derivative are implemented as bc and

bc_jacobian; see (4.24) and (4.20). We also define the function Flinear, which is used

to evaluate the Evans matrix at infinity. The results of Flinear are used to provide

projective conditions for the detonation profiles.
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Lines 136-167

The ODE function and its derivative are implemented as Python functions double_F,

ode_euler, ode_jacobian, and phi; see (4.17) and (4.20).

Lines 169-186

The function guess_function provides an initial estimate of the detonation profile when

a solution at a nearby parameter value is not available.

Lines 188-213

The function detonation_profile_solver pulls everything in RNS.py together to com-

pute detonation profiles numerically for given values of STABLAB variables s and p.

Functions detonation_profile_solver and A are the only ones that need to be explicitly

imported from RNS.py into RNSdriver.py.

1 from __future__ import division

2 from math import exp

3 from numpy import linspace, array, zeros, ones, tanh, diff, newaxis

4 from scipy import linalg

5 from numdifftools import Jacobian

6

7 from core.bin import projection2, soln

8 from core.pybvp6c.bvp6c import bvp6c, bvpinit, deval

9 from core.pybvp6c.structure_variable import *

10

11 def A(x,lmbda,s,p):

12 # multiD-rNS Evans matrix in Eulerian coordinates

13 xi = p['xi']

14

15 # profile variables and their derivatives

16 temp = soln(x,s)

17 u, e, y, z = temp[:,0]

18 u_x, e_x, y_x, z_x = ode_euler(0,temp,s,p)

19
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20 eta, beta = p['eta'], p['beta']

21 mu, nu = p['mu'], p['nu']

22 g, q = p['g'], p['q']

23 phi_e, Dphi_e = phi(p,e)

24

25 mu2 = 2.*mu + eta

26 eta2 = mu + eta

27 rho = 1./u

28 pressure = g*rho*e

29 f1 = pressure + (mu - eta)*u_x

30 f2 = q*rho*phi_e

31 f3 = lmbda + phi_e

32 f4 = lmbda*rho + nu*xi**2.-q*rho*z*Dphi_e

33

34 a11 = -lmbda*rho

35 a16 = -lmbda*rho**2.

36 a17 = 1j*xi*rho

37

38 a21 = -u_x

39 a26 = lmbda*rho + mu*xi**2.

40

41 a31 = -1j*xi*pressure

42 a36 = -1j*xi*pressure*rho

43 a37 = lmbda*rho + mu2*xi**2.

44 a38 = 1j*xi*g*rho

45

46 a41 = -e_x + z*f2

47 a42 = -u_x

48 a46 = rho*z*f2

49 a47 = 1j*xi*f1

50 a48 = f4

51 a49 = -f2

52
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53 a51 = -rho*z*f3

54 a56 = -rho**2.*z*f3

55 a57 = 1j*xi*rho*z

56 a58 = rho*z*Dphi_e

57 a59 = rho*(beta*xi**2. + f3)

58

59 a61 = -pressure/mu2

60 a62 = 1./mu2

61 a66 = (1.-pressure*rho)/mu2

62 a67 = -1j*xi*eta2/mu2

63 a68 = g*rho/mu2

64

65 a73 = 1./mu

66 a76 = -1j*xi*eta2/mu

67 a77 = 1./mu

68

69 a84 = 1./nu

70 a86 = (pressure - mu2*u_x)/nu

71 a88 = 1./nu

72

73 a91 = (beta*z_x - u*z)/beta

74 a95 = u/beta

75 a96 = rho*z_x

76 a99 = u/beta

77

78 return array( [ [a11, 0, 0, 0, 0, a16, a17, 0, 0],

79 [a21, 0, 0, 0, 0, a26, 0, 0, 0],

80 [a31, 0, 0, 0, 0, a36, a37, a38, 0],

81 [a41, a42, 0, 0, 0, a46, a47, a48, a49],

82 [a51, 0, 0, 0, 0, a56, a57, a58, a59],

83 [a61, a62, 0, 0, 0, a66, a67, a68, 0],

84 [0, 0, a73, 0, 0, a76, a77, 0, 0],

85 [0, 0, 0, a84, 0, a86, 0, a88, 0],
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86 [a91, 0, 0, 0, a95, a96, 0, 0, a99] ] )

87

88 def bc(ya,yb,s,p):

89 n = s['n']

90 out = zeros(8)

91 out[0:n] = ya[s['rarray']]-ya[s['larray']] # 4 matching conditions

92 out[n] = yb[s['larray'][3]]-1. # right side condition on z

93 out[n+1:n+3] = s['LP'].T.dot(yb[s['rarray']] - s['UR']) # projection at -

infinity, 2 dim

94 out[n+3] = ya[0]-0.5*(p['u_minus']+p['u_plus']) # 1 phase condition

95 return out

96

97 def bc_jacobian(ya,yb,s,p):

98 try:

99 ga = Jacobian(lambda z:bc(z,yb,s,p),step=1e-7)

100 gb = Jacobian(lambda z:bc(ya,z,s,p),step=1e-7)

101 except:

102 ga = Jacobian(lambda z:bc(z,yb,s,p),step=1e-9)

103 gb = Jacobian(lambda z:bc(ya,z,s,p),step=1e-9)

104 return ga(ya), gb(yb)

105

106 def Flinear(U,p):

107 # Jacobian of the rNS profile ODEs at end states UL or UR.

108 u,e,y,z = U

109 phi_val, D_phi_val = phi(p,e)

110

111 dudu = (1. - p['g']*e/u**(2.))/(2.*p['mu'] + p['eta'])

112 dude = p['g']/(u*(2.*p['mu'] + p['eta']))

113 dudy = 0.

114 dudz = 0.

115

116 dedu = (1.-u + p['g']*p['e_minus'])/p['nu']

117 dede = 1./p['nu']
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118 dedy = p['q']/p['nu']

119 dedz = p['q']/p['nu']

120

121 dydu = y/p['beta'] + z*phi_val/u**(2.)

122 dyde = -z*D_phi_val/u

123 dydy = u/p['beta']

124 dydz = -phi_val/u

125

126 dzdu = -y/p['beta']

127 dzde = 0.

128 dzdy = -u/p['beta']

129 dzdz = 0.

130

131 return array([ [dudu, dude, dudy, dudz],

132 [dedu, dede, dedy, dedz],

133 [dydu, dyde, dydy, dydz],

134 [dzdu, dzde, dzdy, dzdz] ])

135

136 def ode_jacobian(x,y,s,p):

137 out = zeros((8,8))

138 out[:4,:4] = (1.*s['R'])*Flinear(y[s['rarray']],p)

139 out[4:,4:] = (1.*s['L'])*Flinear(y[s['larray']],p)

140 return out

141

142 def double_F(x,y,s,p):

143 n = s['n']; out = zeros(2*n)

144 out[0:n] = (s['R']/s['I'])*ode_euler(x,y[s['rarray']],s,p)

145 out[n:] = (s['L']/s['I'])*ode_euler(x,y[s['larray']],s,p)

146 return out

147

148 def ode_euler(x,w,s,p):

149 u,e,y,z = w

150 phi_val, _ = phi(p,e)
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151

152 # Note that k does not show up in ODE equations because it is defined

153 # in the phi function.

154 return array( [ ((u-1.) + p['g']*(e/u - p['e_minus']))/(2.*p['mu'] + p['eta']),

155 ((e-p['e_minus'])-.5*(u-1.)**2.+(u-1.)*p['g']*p['e_minus']+p['q']*(y+z

-1.) )/p['nu'],

156 u*y/p['beta'] - z*phi_val/u,

157 -u*y/p['beta'] ] )

158

159 def phi(p,e):

160 # Ignition function

161 T = e/p['c'] # Here p.c := 1.

162 if T > p['Ti']:

163 phi = p['k']*exp(-p['EA']/(T-p['Ti']))

164 Dphi = (p['EA']/(T-p['Ti'])**2)*phi

165 return phi, Dphi

166 else:

167 return 0., 0.

168

169 def guess_function(x,s,p):

170 slope = array([8,5,1.3,0.8]); slope = slope[:,newaxis]

171 intercept = array([0,1.25,0.4,0.9]); intercept = intercept[:,newaxis]

172 a = (0.5*(s['UR']+s['UL'])*ones((len(x),1))).T

173 c = (0.5*(s['UR']-s['UL'])*ones((len(x),1))).T

174

175 out = zeros((2*s['n'],len(x)))

176 out[0:4] = a+c*tanh(slope*x*(s['R']/s['I'])-intercept*ones(x.shape))

177 out[4:8] = a+c*tanh(slope*x*(s['L']/s['I'])-intercept*ones(x.shape))

178

179 dzr = diff(out[3,:])/diff(x) # y =-beta*z'/u

180 temp = zeros(len(x)); temp[:-1] = dzr; temp[-1] = dzr[-1];

181 out[2,:] = (s['I']/s['R'])*(-p['beta'])*temp/out[0,:]

182
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183 dzl = diff(out[7,:])/diff(x)

184 temp[:-1] = dzl; temp[-1] = dzl[-1];

185 out[6,:] = (s['I']/s['L'])*(-p['beta'])*temp/out[4,:]

186 return out

187

188 def detonation_profile_solver(s,p):

189 # Solves detonations in Eulerian coordinates

190 AM = Flinear(s['UL'],p)

191 s['LM'] = linalg.orth(projection1(AM,-1,0)[0].T)

192 AP = Flinear(s['UR'],p)

193 s['LP'] = linalg.orth(projection1(AP,1,-1e-8)[0].T)

194

195 pre_double_F= lambda x,y: double_F(x,y,s,p)

196 pre_bc=lambda ya,yb: bc(ya,yb,s,p)

197 pre_ode_jacobian=lambda x,y: ode_jacobian(x,y,s,p)

198 pre_bc_jacobian=lambda x,y: bc_jacobian(x,y,s,p)

199

200 options = struct()

201 options.abstol, options.reltol = 1e-9, 1e-8

202 options.nmax, options.stats = 20000, 'on'

203 options.fjacobian = pre_ode_jacobian

204 options.bcjacobian = pre_bc_jacobian

205

206 xarray = linspace(0,1,150)**(2.)

207 if 'sol' not in s.keys():

208 guess_array = guess_function(xarray,s,p)

209 else:

210 guess_array, _ = deval(s['sol'],xarray)

211 solinit = bvpinit(xarray,guess_array)

212 sol = bvp6c(pre_double_F,pre_bc,solinit,options)

213 return sol, p

Listing 5.2: RNS.py
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